Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why are lions not as big as elephants?

16.01.2007
Carnivores are some of the widest ranging terrestrial mammals for their size, and this affects their energy intake and needs.

This difference is also played out in the different hunting strategies of small and large carnivores. Smaller species less than 15-20 kg in weight specialize on very small vertebrates and invertebrates, which weigh a small fraction of their own weight, whereas larger species (>15-20 kg) specialize on large vertebrate prey near their own mass.

While carnivores around the size of a lynx or larger can obtain higher net energy intake by switching to relatively large prey, the difficulty of catching and subduing these animals means that a large-prey specialist would expend twice as much energy as a small-prey specialist of equivalent body size. In a new article published by PLoS Biology, Dr. Chris Carbone and colleagues from the Institute of Zoology, Zoolog ical Society of London reveal how this relationship might have led to the extinction of large carnivores in the past and why our largest modern mammalian carnivores are so threatened.

The authors provide a model of carnivore energetics in relation to predator and prey size, and compare the model predictions with observed estimates of metabolic rates and intake rates taken from animals in the wild. By analyzing the balance between energy intake and expenditure across a range of species, the authors reveal that mammalian carnivores would not be able to exceed a body mass of one ton. Their model predictions are consistent with the data we have. Most mammalian carnivores are relatively small compared with the largest extinct terrestrial herbivorous mammals, such as the Indricothere, which weighed around 15 tons. The largest existing carnivore, the polar bear, is only around half a ton, while the largest known extinct carnivores, such as the short-faced bear, weighed around one ton. The authors also note that the largest terrestrial non-mammalian predators, such as Giganotosaurus and Tyrannosaurs, may have achieved their massive size by having a lower metabolic rate. Indeed, previous estimates of total metabolic rate for these species are similar to those of a mammal weighing about a ton.

... more about:
»carnivore »mammal »mammalian »species

We know that the largest carnivores that exist today are particularly vulnerable to threats imposed by humans and have been shown to have higher rates of extinction in the fossil record than smaller species even prior to the evolution of man. Carnivores at the upper limits of body mass would have been heavily reliant on abundant large prey to both minimize energy expenditure and maintain high rates of energy intake. Slight environmental perturbations, anthropogenic or otherwise, leading to lower prey availability, could readily upset this energy balance. It may have also contributed to the extinction of the largest carnivores and explain why the largest modern mammalian carnivores are so rare and vulnerable today.

Citation: Carbone C, Teacher A, Rowcliffe JM (2007) The costs of carnivory. PLoS Biol 5(2): e22. doi:10.1371/journal.pbio.0050022.

Andrew Hyde | alfa
Further information:
http://www.plosbiology.org
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050022

Further reports about: carnivore mammal mammalian species

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>