Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study sheds light on 'dark states' in DNA

11.01.2007
Chemists at Ohio State University have probed an unusual high-energy state produced in single nucleotides -- the building blocks of DNA and RNA -- when they absorb ultraviolet (UV) light.

This is the first time scientists have been able to probe the "dark" energy state -- so called because it cannot be detected by fluorescence techniques used to study other high-energy states created in DNA by UV light.

The study suggests that DNA employs a variety of means to dissipate the energy it absorbs when bombarded by UV light.

Scientists know that UV light can cause genetic alterations that prevent DNA from replicating properly, and these mutations can lead to diseases such as cancer.

The faster a DNA molecule can dissipate UV energy, the lesser the chance that it will sustain damage -- so goes the conventional scientific wisdom. So the dark states, which are much longer lived than previously known states created by UV light, may be linked to DNA damage.
... more about:
»DNA »dissipate »picosecond

The existence of this dark energy state -- dubbed n(pi)* (pronounced "n-pi-star") -- had previously been predicted by calculations. Other experiments hinted at its existence, but this is the first time it has been shown to exist in three of the five bases of the genetic code -- cytosine, thymine and uracil.

The detection of this dark state in single bases in solution increases the chances that it may be found in the DNA double helix, said Bern Kohler, associate professor of chemistry at Ohio State and head of the research team.

The Ohio State chemists determined that, when excited by ultraviolet light, these three bases dissipate energy through the dark state anywhere from 10-50 percent of the time.

The rest of the time, energy is dissipated through a set of energy states that do fluoresce in the lab. These "bright" energy states dissipate the energy much faster, in less than one picosecond.

A picosecond is one millionth of one millionth of a second -- an inconceivably short length of time. Light travels at 186,000 miles per second, but in twenty picoseconds it would only travel just under a quarter of an inch. Still, a picosecond is not so fast compared to the speed of some chemical reactions in living cells.

In tests of single DNA bases, the dark state lasted for 10-150 picoseconds -- much longer than the bright state. The chemists reported their results in the Proceedings of the National Academy of Sciences.

"We want to know, what makes DNA resist damage by UV light?" said Kohler. "In 2000, we showed that single DNA bases can dissipate UV energy in less than one picosecond. But now we know that there are other energy states that have relatively long lifetimes."

"Now we see that there is a family of energy states in DNA responsible for energy dissipation, and this is a major correction in how we view DNA photostability."

Until now, the proposed dark energy state of DNA was a little like the dark matter in the universe – there was no direct way of probing it. The Ohio State chemists used a technique called transient absorption, which is based on the idea that molecules absorb light at specific wavelengths, and allows them to study events happening in less than a picosecond.

They found that DNA dissipates UV energy through the dark state 10-50 percent of the time, depending on which DNA base is excited, and whether a sugar molecule is attached to the base or not.

Next, Kohler's lab is investigating whether the dark state can be linked to DNA damage.

"What are the photochemical consequences of long-lived states? Are they precursors to some of the chemical photoproducts that we know cause damage? That's the Holy Grail in this field -- connecting our growing knowledge of the electronic states of DNA with the photoproducts that damage it," he said.

Kohler's coauthors include Carlos E. Crespo-Hernandez, a former postdoctoral researcher at Ohio State, and Patrick M. Hare, who just obtained his Ph.D. from the university and is about to begin a position as a postdoctoral researcher at the University of Notre Dame.

Bern Kohler | EurekAlert!
Further information:
http://www.osu.edu

Further reports about: DNA dissipate picosecond

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>