Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscale Cubes and Spheres

08.01.2007
Uniform porous silicon oxide nano-objects formed by controlled disassembly of a lattice structure

Porous nano-objects with defined sizes and structures are particularly interesting, for example, as capsules for enzymes, a means of transport for pharmaceutical agents, or building blocks for larger nanostructures. The production of such tiny, three-dimensional objects in a targeted and controlled manner—and as simply and efficiently as possible—remains a challenge for scientists.

At the University of Minnesota, a team led by Andreas Stein has now developed an interesting new process for the production of nanoscopic cubes and spheres of silicon dioxide. The researchers reported their trick in Angewandte Chemie: Instead of building their particles from smaller units, they used the controlled disassembly of larger, lattice-like structures.

Most conventional methods for the production of porous silicon dioxide nanoparticles suffer from the fact that the growing particles tend to aggregate (clump together), making it difficult to achieve a uniform size. The shape of the particles can hardly be influenced at all. Stein and his team chose a backward approach, first building up a lattice structure of silicon dioxide and then disassembling it to get the shape they wanted. The “moulds” used for the lattice were tiny spheres of a plastic called polymethylmethacrylate (PMMA), which assemble themselves through “closest packing of spheres” into a colloidal crystal. Between the spheres in this structure, there are little, nearly tetrahedral and nearly octahedral spaces. The researchers filled these cavities with a solution containing an organosilicon compound, oxalic acid, and a surfactant.

... more about:
»Silicon »controlled »dioxide »lattice

This mixture hardens into a solid gel. The plastic spheres and surfactant are then burned off by heating. The surfactant leaves behind tiny pores, and the gelled organosilicon compound slowly converts to a solid silicon oxide. What remains initially is a silicate lattice that is the negative of the packed spheres: tiny tetrahedra and octahedra attached to each other by delicate bridges. As the conversion to silicon dioxide continues, the structure shrinks until it breaks at the weakest points—the bridges. The fragments formed by this process are shaped like octahedra or smaller tetrahedra. These continue to contract until the octahedra become nearly cubic and the tetrahedra become nearly spherical, making highly uniform structures with worm-like pores.

By varying the colloidal crystals used as the mould, the size and shape of the resulting particles can be controlled. Through vapor deposition or polymer grafting, other compounds can be added to the structure. Subsequent etching away of the silicon oxide allows this new technique to be used as a starting point for nanostructures made of other materials.

Andreas Stein | EurekAlert!
Further information:
http://www.chem.umn.edu

Further reports about: Silicon controlled dioxide lattice

More articles from Life Sciences:

nachricht Phagocytes versus killer cells - A closer look into the tumour tissue
21.10.2019 | Universität Duisburg-Essen

nachricht How intestinal cells renew themselves – the role of Klumpfuss in cell differentiation
21.10.2019 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>