Hotspots of mercury contamination identified in eastern North America

A US and Canadian research team surveying mercury contamination in fish and birds in the northeastern United States and southeastern Canada has identified five “hotspots” where concentrations of the element exceed those established for human or wildlife health.

The team focused on levels of the potent neurotoxin in yellow perch and common loons, but it also took into account contamination in other fish, birds, and mammals. In addition to these hotspots in New England, New York, and Nova Scotia, the researchers found nine “areas of concern” in these regions and in Quebec and New Brunswick. Findings from the team's analysis are summarized in the January 2007 issue of BioScience.

The hotspots are believed to result from complex processes that move atmospherically released mercury through the environment, and from site-specific characteristics such as the high sensitivity of wetlands and forested areas to mercury inputs. Local sources of mercury are also significant. Although mercury is not directly harmful at ambient levels, it is concentrated up to a millionfold and chemically modified in aquatic food chains, resulting in dangerous levels of methylmercury in some wildlife species. Fish consumption advisories responding to mercury contamination exist in all the states and provinces included in the study, and loons are adversely affected by mercury levels they experience.

The hotspots have implications for “cap and trade” approaches being implemented for regulation of emissions from coal-fired electric power stations, which, along with municipal waste incinerators, are major sources of mercury pollution. Cap and trade approaches seek to reduce the total release of mercury but could lead to static or increased emissions in some areas. Greater deposition of mercury near areas that are highly sensitive to the element or that are already affected by it could raise the risk to people and wildlife that consume fish. There is reason to believe, however, that lowering emissions can reduce risk: an analysis of levels of mercury contamination over time in the Merrimack River watershed suggests that lowered emissions reduced mercury levels in biota within a few years.

The 10-member research team was led by David C. Evers of the BioDiversity Research Institute in Gorham, Maine. The study was based on samples collected over four years by the Northeastern Ecosystem Research Cooperative and made use of 7311 observations for seven species. The study report in BioScience is accompanied by an overview article, written by Charles T. Driscoll of Syracuse University and colleagues, that summarizes current knowledge about mercury contamination in the region; the authors conclude that reductions in mercury emissions beyond those currently under way will be needed to eliminate the element as a health risk to humans or to populations of loons.

Media Contact

Donna Royston EurekAlert!

More Information:

http://www.aibs.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors