Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Living View in Animals Shows How Cells Decide To Make Proteins

04.12.2006
Scientists at Duke University Medical Center have visualized in a living animal how cells use a critical biological process to dice and splice genetic material to create unique and varied proteins.

The scientists say the findings, made in mice, help explain a key wonder of human biology: how the same genes found in every cell of an individual's body can produce different proteins in different tissues and organs. These varied proteins, in turn, dictate the function of each tissue or organ.

The findings also may offer insight into a number of diseases, including cancer, in which the genetic process -- called alternative splicing -- goes awry and produces the wrong proteins, the scientists said.

The scientists published the findings in the Dec. 1, 2006, issue of the journal RNA. The study was funded by the National Institutes of Health.

... more about:
»Garcia-Blanco »IIIb »RNA »silencer

Scientists previously have examined alternative splicing in cells and tissues in test tubes, but this study marks its first successful visualization in a living mammal, said senior investigator Mariano Garcia-Blanco, M.D., Ph.D., a professor of molecular genetics and microbiology.

"We were able to watch alternative splicing as it occurred in different tissues," he said. "It's an excellent example of how experiments in living organisms provide a much more complete picture of how genes and proteins behave than do experiments using cells in culture."

Until 20 years ago, scientists believed that a single gene made a single protein. With the discovery of alternative splicing, it became clear that one gene can produce multiple proteins.

In alternative splicing, microscopic "scissors" in a gene chop the genetic material RNA into bits called "exons" and then reassemble the bits in a different order to form a new RNA molecule. In the process, some of the exons are retained while others are excluded. The exons that are retained in the final RNA determine which proteins the RNA produces within the cell.

The scissors that do the genetic chopping are, in most cells, proteins called splicing silencers and splicing enhancers.

In the current study, Garcia-Blanco's team sought to identify which silencers chop out an important segment of RNA in a gene called fibroblast growth receptor 2 (FGFR2). This gene plays a critical role in normal mouse and human development, and the order in which its RNA is assembled can alter an animal's development.

As a model system to study, the scientists genetically created a "glowing" mouse. The mouse carried in its FGFR2 gene a green fluorescent tag that would glow when a common type of silencer, called an "intronic silencer," chopped out a specific exon, called IIIb.

In this way, the scientists could track whether intronic silencers were chopping out the IIIb exon -- and if so, in which tissues and organs -- or whether other types of silencers or helper proteins were involved.

By tracking the green glow, the team found that cells in most tissues made the same decision to silence exon IIIb, but the cells used a variety of silencers and helper proteins to accomplish this task, said Vivian I. Bonano, a graduate student in the University Program in Genetics and Genomics and lead author of the journal report.

"Identifying which silencers are active in a given tissue or organ will ultimately help scientists understand how exons are erroneously included or excluded in various disease processes," Bonano said.

For example, a cell's decision to include exon IIIb is critical because the exon's presence or absence determines which variant of the FGFR2 protein is produced, she said. Such subtle variations in proteins can alter the cell's behavior, just as switching ingredients in a favorite recipe can change the food's flavor, according to the scientists.

"Viewing these decisions is most relevant in a living animal, because cells behave differently in their natural environment versus an artificially created environment such as a laboratory tissue culture," Garcia-Blanco said. "The complexity of alternative splicing necessitates its visualization as the decisions are occurring, because taking a cell out of its context shows only its current status and not how it arrived at that place."

For instance, the splicing process can change even from day to day as an animal develops, he said, adding that extracting cells and watching them in a culture cannot convey all of these transient changes.

Moreover, different cell types within the brain or other organs can exhibit different splicing decisions, Garcia-Blanco said. For example, neurons reside next to glial cells in the brain, yet they express different proteins in different amounts, and detecting such differences in cell cultures can be exceedingly difficult, he said.

"This is a powerful tool to apply to mouse genetics to learn when and where in the animals' bodies alternative splicing decisions are made and, eventually, to learn what factors are critical in making these decisions," Garcia-Blanco said.

"Given the importance of alternative splicing in health and disease," he added, "this anatomic mapping of splicing decisions may give us considerable insight into the many human diseases associated with improper regulation of splicing."

Becky Levine | EurekAlert!
Further information:
http://www.mc.duke.edu

Further reports about: Garcia-Blanco IIIb RNA silencer

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>