Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Old enzyme learns new tricks

27.11.2006
Scientists from the Norwich Research Park (NRP) have discovered an antibiotic-producing enzyme in oats that could be used in the future to protect major cereal crops from fungal diseases such as “take-all”. This disease is estimated to affect half the UK’s wheat crops costing the agricultural industry up to £60 million per year.

NRP scientists led by Professor Anne Osbourn at the John Innes Centre (Norwich, UK) in collaboration with IGER (Aberystwyth, UK) and the Institute of Plant Molecular Biology (IPMB, Université Louis Pasteur, Strasbourg, France) found that an enzyme from oats, called Sad2, helps produce a chemical that makes the plant resistant to infections. Take-all is a particularly damaging fungal disease because it infects the roots of the plant and can be passed onto subsequent crops grown in the same field.

The researchers found that Sad2 functions in the roots, producing the antimicrobial at the site most vulnerable to fungal attack. The research, funded by the Biotechnology & Biological Sciences Research Council and Gatsby Foundation, is published in the Proceedings of the National Academy of Sciences this week and shows that Sad2 has evolved from an ancient family of enzymes that have remained unchanged over millions of years and are almost identical across the plant, fungi and animal kingdoms. All the other enzymes in this family are involved in producing essential fats called sterols, such as cholesterol in humans, and include targets for cholesterol-lowering drugs, antifungals and herbicides. The discovery of a new member of this enzyme family with a completely different function was therefore surprising.

“Many plants produce chemicals called ‘natural products’ that are not essential to growth but have a range of important ecological functions. They can be attractants for pollinating insects or, in this case, protect the plant against diseases,” explains Professor Osbourn “Our aim in this work is to understand how these natural products are made and why the ability to produce particular natural products is limited to certain plant species. Our data show that the Sad2 gene has evolved from the most ancient and highly conserved cytochrome P450 family by gene duplication and has then diverged from its original role in making sterols to adopt a new function producing an antimicrobial chemical called avenacin”.

... more about:
»Cluster »Sad2 »enzyme »function

The synthesis of avenacin is a multistep process; the JIC team have already identified five genes coding for different enzymes in this pathway and are currently isolating the others. Unexpectedly, they found these genes were clustered together in the plant’s genetic code; clusters of genes that have connected functions are often found in bacteria or fungi but are extremely rare in plants.

“This is only the second gene cluster that has been identified in plants, but I now believe they are more common than previously thought,” says Professor Osbourn, “If we could transfer this gene cluster from oats into other plants, it might be possible to breed cereals that are resistant to devastating crop diseases such as take-all. Our findings also have broad significance for understanding how new metabolic pathways arise in plants, and this is an area that we are now investigating in other plant species such as rice and in the model plant Arabidopsis.”

The Sad2 gene technology is the subject of a pending worldwide patent application (International Patent Publication Number WO 2006/044508) assigned to the technology transfer company PBL. PBL are currently working closely with the AgBiotech company DuPont to develop further and commercially exploit applications of the technology. Further commercial partners are also being sought by PBL for certain applications of the technology.

Zoe Dunford | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Cluster Sad2 enzyme function

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>