Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology used to construct the first map of structural variation in the human genome

24.11.2006
Methods also applicable to disease diagnosis, drug response tests

Beyond the simple stream of one-letter characters in the human genome sequence lies a complex, higher-order code. In order to decipher this level of architecture, scientists have developed powerful new experimental and algorithmic methods to detect copy number variants (CNVs)--defined as large deletions and duplications of DNA segments. These technologies--reported today in the journal Genome Research--were used to create the first comprehensive map of CNVs in the human genome, concurrently published in Nature. A related article appears in Nature Genetics.

CNVs are responsible for genetic changes in Alzheimer's and Parkinson's, susceptibility to HIV-1, some forms of color blindness, and many other diseases. They lead to variation in gene expression levels and may account for a large amount of phenotypic variation among individuals and ethnic populations, including differential responses to drugs and environmental stimuli. Mechanisms underlying the formation of CNVs also provide insight into evolutionary processes and human origins.

Using microarray technology, scientists can scan for CNVs across the genome in a single experiment. While this is a cost-effective means of obtaining large amounts of data, scientists have struggled to accurately determine CNV copy number and to precisely define the boundaries of CNVs in the genome. Two papers published today in Genome Research present groundbreaking approaches to address these issues.

... more about:
»Array »CNV »Genome »algorithm

One paper describes a new whole-genome tiling path microarray, which was constructed from the same DNA used to sequence the human genome in 2001. The array covers 93.7% of the euchromatic (gene-containing) regions of the human genome and substantially improves resolution over previous arrays. The array was employed in a process known as comparative genomic hybridization (CGH), which involves tagging genomic DNA from two individuals and then co-hybridizing it to the array. Data from the array were assessed with a new algorithmic tool, called CNVfinder, which accurately and reliably identified CNVs in the human genome.

"This method helped us to develop the first comprehensive map of structural variation in the human genome," says Dr. Nigel Carter, one of the lead investigators on the project. "We used it to help identify 1,447 CNVs, which covered 12% of the human genome."

The other paper presents a new multi-step algorithm used with the Affymetrix GeneChip® Human Mapping 500K Early Access SNP arrays. The specificity of the algorithm, coupled with the increased probe density of these arrays, permitted the identification of approximately 1,000 CNVs, many of which were below the detection size limit of alternative methodologies. Furthermore, the algorithm more accurately estimated CNV boundaries, thereby permitting a detailed comparison with other genomic features.

"This new approach will be useful in understanding the role of CNVs in disease pathology--not only copy number changes in cancer cells, but also possible association of CNVs with common diseases," explains Dr. Hiroyuki Aburatani, one of the scientists who led the development of the algorithm. "We'll be able to develop diagnostic tests with sub-microscopic resolution, and because the analysis detects SNPs--single-nucleotide polymorphisms--in addition to CNVs, it will find widespread use among researchers performing disease-association studies."

Maria A. Smit | EurekAlert!
Further information:
http://www.genome.org

Further reports about: Array CNV Genome algorithm

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>