Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Setting the Stage to Find Drugs Against SARS

21.11.2006
Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have set the stage for the rapid identification of compounds to fight against severe acquired respiratory syndrome (SARS), the atypical pneumonia responsible for about 800 deaths worldwide since first recognized in late 2002.

Researchers from Brookhaven’s biology department and the National Synchrotron Light Source (NSLS) characterized a component of the virus that will be the target of new anti-SARS virus drugs. The results were published online by Biochemistry on November 17, 2006.

“Although vaccines against viruses are very effective, vaccines for viruses that mutate rapidly – such as the viruses that cause SARS, AIDS, and bird flu – are much more difficult to obtain,” said Brookhaven biologist Walter Mangel, the lead author of the paper. “Even if a vaccine is available, antiviral agents are important in stopping the spread of highly infectious viruses. If antiviral agents for SARS had been available, they could have been used to contain the outbreak to the initial site of the infection.”

The researchers studied the SARS main proteinase, an enzyme used by the virus during infection to cut newly made viral proteins into gene-sized, functioning pieces. If the proteinase is prevented from working, the virus infection is aborted. Previous studies have revealed that the proteinase is inactive when in the form of single molecules. But once two of those molecules bind together to make what is called a dimer, the enzyme becomes active and is able to play its role in SARS virus reproduction. The challenge for researchers, and the focus of the Brookhaven study, was to determine the concentration at which individual proteinase molecules form active dimers. Knowing this concentration, for which estimates at other laboratories have varied greatly, would allow researchers to search for anti-SARS drugs more efficiently by ensuring that the proteinase used in tests is initially in its active form.

Using three different scientific techniques, including x-ray scattering at the NSLS, the Brookhaven researchers obtained almost identical values for this concentration. Now that this crucial value has been narrowed down to a precise range, researchers can focus on finding compounds that bind to the active form of the enzyme.

“Targets for antiviral drugs must be carefully chosen such that binding to it prevents the virus from reproducing,” Mangel said. “Viral proteinases are excellent targets for antiviral drugs. One reason so many people are surviving the AIDS epidemic is the effectiveness of drugs targeted to the proteinase of human immunodeficiency virus (HIV).”

One way to obtain compounds that bind to a proteinase is via high-throughput screening. Chemical libraries containing tens of thousands of small compounds are available that can be searched for effective drugs against various diseases. Small amounts of a target, e.g., an active viral proteinase, are placed in tiny wells in a plate, and a different compound from the library is added to each well.

To determine whether a compound binds to and inhibits the proteinase, an additional molecule is added that changes color in the presence of an active proteinase. Wells that don’t show a color change therefore contain compounds that inhibit the proteinase, and could be effective antiviral agents. Earlier this year, Mangel’s research group published a procedure on the synthesis of a new compound that changes color in the presence of the active form of the SARS main proteinase.

However, for this screening process to work, the SARS proteinase inserted into the wells has to be active to begin with. Knowing the concentration range for dimer formation will therefore help researchers in their search for a compound to stop the virus. “Now that the stage is set, high-throughput screening can begin,” Mangel said. “Hopefully, it will yield an antiviral agent that can be stockpiled before a virulent strain of the virus reappears.”

This research was supported by the Office of Basic Energy Sciences within the U.S. Department of Energy and the National Institutes of Health.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

Further reports about: Brookhaven SARS Vaccine antiviral concentration proteinase

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>