Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical Pairing - Origin of life: the search for the first genetic material

17.11.2006
How did life originate on Earth?

Until now, there have only been theories to answer this question. One of the fundamental steps leading to living organisms is the development of molecules that can replicate and multiply themselves—the first genetic material. A team led by Ramanarayanan Krishnamurthy and Albert Eschenmoser at The Scripps Research Institute in La Jolla, California, is researching how this molecule might have looked.

Our own genetic material is DNA. Its backbone is made of sugar and phosphate building blocks. Like a strand of pearls, the four “letters” of the genetic code are arranged along this backbone. Two complementary strands of DNA form a double helix because the purine bases adenine (A) and guanine (G) form specific pairs with the pyrimidine bases thymine (T) and cytosine (C), attaching to each other through two or three docking sites. This type of structure could also be the basis for the first genetic material. However, it is doubtful that its backbone consisted of sugar and phosphate; it may have consisted of peptide-like building blocks. Amino acids, from which peptides are made, were already present in the “primordial soup”. However, the bases may also have looked different in their primitive form.

To find the right track in searching for the origins of life, the team is trying to put together groups of potential building blocks from which primitive molecular information transmitters could have been made. The researchers have taken a pragmatic approach to their experiments. Compounds that they test do not need to fulfill specific chemical criteria; instead, they must pass their “genetic information” on to subsequent generations just as simply as the genetic molecules we know today—and their formation must have been possible under prebiotic conditions. Experiments with molecules related to the usual pyrimidine bases (pyrimidine is a six-membered aromatic ring containing four carbon and two nitrogen atoms), among others, seemed a good place to start. The team thus tried compounds with a triazine core (a six-membered aromatic ring made of three carbon and three nitrogen atoms) or aminopyridine core (which has an additional nitrogen- and hydrogen-containing side group). Imitating the structures of the normal bases, the researchers equipped these with different arrangements of nitrogen- and hydrogen- and/or oxygen-containing side groups.

... more about:
»Backbone »Genetic »genetic material

Unlike the usual bases, these components can easily be attached to many different types of backbone, for example, a backbone made of dipeptides or other peptide-like molecules. In this way, the researchers did indeed obtain molecules that could form specific base pairs not only with each other, but also with complementary RNA and DNA strands. Interestingly, only one sufficiently strong pair was formed within both the triazine and aminopyridine families; however, for a four-letter system analogous to the ACGT code, two such strongly binding pairs are necessary. “Our results indicate that the structure of the bases, rather than the structure of the backbone, was the critical factor in the development of our modern genetic material,” says Krishnamurthy. Many chain molecules are able to adopt a suitable spatial structure, but only a few bases can enter into the necessary specific pairing. In this, our alternative bases are clearly inferior to the usual Watson–Crick bases. “Based on our observations, we are beginning to understand why the natural bases are optimal with regard to the function they perform.”

Author: Ramanarayanan Krishnamurthy, The Scripps Research Institute, La Jolla, (USA), mailto:rkrishna@scripps.edu

Title: Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligodipeptides and Oligodipeptoids Tagged with Triazines as Recognition Elements / Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligodipeptides Tagged with 2,4-Disubstituted 5-Aminopyrimidines as Recognition Elements

Angewandte Chemie International Edition, doi: 10.1002/anie.200603207

Ramanarayanan Krishnamurthy | Angewandte Chemie
Further information:
http://www.angewandte.de
http://www.scripps.edu

Further reports about: Backbone Genetic genetic material

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>