Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly plant bug sequenced

31.01.2002


Researchers grapple with wilt-causing bacteria


Southern wilt affects more than 200 species around the world.
© D. Gay


An infected cutting. The microbe can wipe out entire fields.
© D. Gay



It’s the Mike Tyson of plant bacteria," says Gerry Saddler, of the Scottish Agricultural Science Agency, Edinburgh.

Saddler is referring to Ralstonia solanacearum, the cause of southern bacterial wilt possibly the most important plant disease in the world. French researchers have now sequenced the bacteria’s genome - information that should lead to a better understanding of plant disease, and perhaps new ways to fight it1.


Southern wilt or brown rot affects more than 200 species around the world, including potatoes, bananas, mulberry trees and ginger. Entering plants through their roots, Ralstonia mounts a deadly assault on their fluid and nutrient transport networks.

The bacterium’s genome sequence gives some clues to its versatility. An unusually large number of genes enable it to attach to plant cells and inject them with its proteins. It may use different genes on different host species.

Finding the plant molecules that these two processes latch onto, "might allow us to engineer resistant varieties," says Christian Boucher of the National Agronomic Research Institute in Toulouse who led the sequencing project.

The genome should also provide insight into many other plant diseases that employ similar infection strategies. "It’ll revolutionize molecular plant pathology," says plant biologist James Alfano of the University of Nebraska, Lincoln.

Off switch

Knowing the genes that cause disease might also allow us to switch them off. Ralstonia can do this itself, and live in plants without harming them.

Julian Smith, of CABI Bioscience in Egham, England, is trying to engineer benign forms of the bacterium with which to inoculate plants against the lethal form. Early results are promising, and the team has permission, but not funds, to run trials in Kenya and South Africa.

Other potential routes of attack are the genes that Ralstonia use to make chemicals to kill each other, says Smith. Engineering these into potato plants "could have enormous applications", he says.

Rotten luck

At present there is little we can do to combat Ralstonia aside from try to prevent its spread. Conventional plant breeding has largely failed to create resistant crops - perhaps because the bacterium uses many genes to bring about disease. The bug’s wide host range and ability to survive in the soil for several years makes it difficult to evade by crop rotation.

The microbe can wipe out entire fields. In parts of Florida, for example, it has killed 75% of the potato crop. "Fields got so heavily infested that people abandoned them," says plant pathologist Tim Denny of the University of Georgia, Athens.

Ralstonia prefers warm weather, but a cold-tolerant strain from Andean potatoes reached Europe and North America in the 1990s. This strain can spread via rivers and has since infected wild plants, where it does no harm.

Seed-potato distribution is now tightly monitored. "People are very concerned that the pathogen might escape," says Denny. Global warming might be aiding its spread.

References


  1. Salanoubat, M. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature, 415, 497 - 502, (2002).


JOHN WHITFIELD | Nature News Service

More articles from Life Sciences:

nachricht Structual color barcode micromotors for multiplex biosensing
21.01.2020 | Science China Press

nachricht Cyanobacteria in water and on land identified as source of methane
21.01.2020 | Forschungsverbund Berlin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new look at 'strange metals'

21.01.2020 | Materials Sciences

Body's natural signal carriers can help melanoma spread

21.01.2020 | Health and Medicine

Structual color barcode micromotors for multiplex biosensing

21.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>