Mass copying of genes speeds up evolution

All organisms can amplify parts of their DNA under certain conditions, and the variants that have an increased amount of one special gene can gain survival advantages when they are exposed to various types of external conditions, such as stress in the form of antibiotics (bacteria), chemotherapy (humans), or insecticides (insects).

In this study the researchers show that the bacteria Salmonella typhimurium uses several different mechanisms to increase the number of copies of a gene that helps the cell use the sugar lactose as a source of nourishment.

“When the bacterium’s gene for making use of lactose is inefficient, that is, when the bacterium has an ineffective enzyme for breaking down lactose, mutant bacteria are favored instead, with up to a hundred-fold rise in the number of copies of the gene,” says Professor Dan Andersson, one of those behind the study.

This has two consequences: on the one hand, the bacterium manages to grow on lactose because the amount of the inefficient enzyme increases and, on the other hand, the chances increase that the bacterium will develop a mutation in one of these 100 identical genes leading to an improvement in the enzyme function. The scientists also show that amplification proceeds stepwise: first, a large region is duplicated and then smaller regions within that region are amplified to high numbers of copies. According to Dan Andersson, it is probably much more common than was previously thought, which is extremely exciting.

“And they are important, since this means that evolutionary changes can take place at a considerably higher speed. One reason the extent of this has been underestimated is their inherent instability, which makes them difficult to study in laboratory experiments.”

Media Contact

Anneli Waara alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors