Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In early embryos, cilia get the message across

23.10.2006
Having your heart in the right place usually means having it located on the left side of your body. But just how a perfectly symmetrical embryo settles on what's right and what's left has fascinated developmental biologists for a long time. The turning point came when the rotational beating of cilia, hair-like structures found on most cells, was identified as essential to the process.

Now, scientists at the Salk Institute for Biological Studies take a step back and illuminate the molecular process that regulates formation of cilia in early fish embryos. In a study published in a forthcoming issue of Nature Genetics, the Salk team, led by Juan Carlos Izpisúa Belmonte, Ph.D., a professor in the Gene Expression Laboratory, identified a novel factor that links early developmental signals with the function of cilia and their role in controlling left-right specification in zebrafish.

"When we altered the function of the gene duboraya, we saw problems with cilia formation, although the gene product itself is not a part of the structure. This opens up a new area of research," says Belmonte.

Cilia have been known to cell biologists for over a hundred years. Belmonte is convinced that these humble structures, which have until recently been ignored by physiologists and molecular biologists alike, are poised to take center stage in the field of biology. Explains Belmonte: "When you impair the function of cilia or the flow of cilia, you create substantial problems throughout the body."

... more about:
»Belmonte »Embryo »cilia »duboraya

These simple, whip-like structures are not only critically involved in specifying left-right sidedness during development, but they help move fluid and mucus around the brain, lung, eye and kidney, and are required for smell, sight and reproduction. Medical conditions, such as diabetes and obesity, have been linked to structural defects in the architecture or in function of cilia. Moreover, recent evidence indicates that cilia may have additional roles in controlling skeletal development and brain function.

Cilia on the outer surface of the embryo's underside, an area called the ventral node in mammals, exhibit a characteristic twirling movement that wafts chemical messengers over to the left side. This sets up a chemical concentration gradient that tells stem cells how and where to develop. When cilia function is impaired, organs like the heart, lungs, and liver may end up on the wrong side of the body.

When postdoctoral researcher and first author Isao Oishi, Ph.D., searched for genes in zebrafish involved in the left-right patterning of early embryos, he expected to find genes encoding components of cilia. "Instead we found a non-structural cilia gene that influences the function of the cilia, and that, among other things, caused problems with left/right patterning," he says. He named the gene duboraya after the shape of the Japanese duboraya lantern, which fish with an inactivated version of the gene assume as they develop.

Oishi discovered that duboraya is required for formation of fully functional cilia in Kupffer's vesicle, the fish equivalent of the mammalian ventral node. Without duboraya, cilia were reduced to short stumps, unable to create the counterclockwise flow needed to establish left versus right. Duboraya protein, he found, is activated by frizzled-2, a member of the highly conserved Wnt signaling pathway, which orchestrates the activities of a vast number of cells during embryonic development.

Explains Belmonte: "We could show that genes that sense their external or internal environment communicate with structural genes that are responsible for making the cilia and tell them to beat this way or that way. What Isao discovered is a mechanism of how they relay information."

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Belmonte Embryo cilia duboraya

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>