Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer stem cells linked to radiation resistance

23.10.2006
Certain types of brain cancer cells, called cancer stem cells, help brain tumors to buffer themselves against radiation treatment by activating a "repair switch" that enables them to continue to grow unchecked, researchers at Duke University Medical Center have found.

The researchers also identified a method that appears to block the cells' ability to activate the repair switch following radiation treatment. This finding may lead to the development of therapies for overcoming radiation resistance in brain cancer as well as other types of cancer, the researchers said.

Working with animal and cell culture models, the researchers found that a specific cellular process called the "DNA damage checkpoint response" appears to enable cancer stem cells to survive exposure to radiation and to switch on a signal to automatically repair any damage caused to their DNA.

"In recent years, people have hypothesized that cancer stem cells are responsible for the resistance of malignant tumors to radiation treatment," said Jeremy Rich, M.D., senior investigator of the study and an associate professor of neurology at Duke. "We have shown, for the first time, that this is indeed the case."

The findings appear Oct. 18, 2006, in the advance online edition of the journal Nature. The research was supported by the National Institutes of Health and a number of philanthropic organizations [complete list below].

The type of cancer that the researchers studied, glioblastoma, is highly resistant to radiation and other forms of treatment and is the most deadly form of brain cancer worldwide. Although aggressive treatments can destroy the majority of the cancerous cells, a small fraction of them remain and often regenerate into even larger masses of tumor cells.

Until recently, scientists knew little about what made these resistant cells different from those that succumb to radiation treatment. It was clear, however, that the cells shared characteristics similar to those of normally functioning nerve stem cells, Rich said.

In the current study, the researchers used glioblastoma tissue removed from patients during neurosurgery and created two separate models. For one model, the researchers extracted cells from the tissue and grew them in cultures in the laboratory. For the second model, they transplanted the glioblastoma tissue into the frontal lobes of the brains of mice.

The researchers first measured the number of glioma stem cells present in the original tissue and then administered set doses of ionizing radiation to the cell cultures and to the mice. In both cases, the researchers observed a roughly fourfold jump in the number of glioma stem cells present in the tumor tissue following radiation treatment.

Because ionizing radiation works primarily by causing permanent damage to the key genetic material of cells, DNA, the researchers hypothesized that the glioma stem cells survive and multiply by somehow fixing radiation-induced DNA damage better than the other cancer cells.

To test this, the researchers searched the tissue samples for specific proteins that are responsible for detecting DNA damage. Using cell samples taken from both study models, the team examined the DNA damage checkpoint response both before and after use of ionizing radiation treatments by testing for activation of the key proteins that detect DNA damage. The researchers wanted to know whether the cells, following exposure to radiation treatment, would repair the DNA damage by activating the checkpoint response or whether they would instead die.

The team found that after ionizing radiation, the DNA damage checkpoint proteins in glioma stem cells were more highly activated than in other cancer cells. This heightened activation, the researchers said, leads cancer stem cells to more effectively repair DNA damage and thus render the cells less likely to die as a result of the treatment.

In another set of experiments, the researchers treated both the test animals and the cell cultures with a drug, called debromohymenialdisine, which is known to inhibit the proteins involved in the activation process. They added the drug before and after radiation treatment and measured the number of surviving cancer stem cells.

They found that administering the drug before radiation did little to change the number of cancer stem cells, but giving the drug in conjunction with radiation appeared to halt the resistance of cancer stem cells to radiation. This finding, the researchers said, suggests that use of a checkpoint inhibitor during radiation ruins the cells' potential to repair themselves and increases the likelihood that the cells will die.

"Our findings show one pathway in cancer stem cells that promotes the radiation resistance of glioblastomas," said Rich. "Treatments that target DNA damage checkpoint response in cancer stem cells may overcome the radiation resistance and eventually allow us to help even greater numbers of cancer patients."

Tracey Koepke | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
16.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>