Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key gene controlling kidney development found

12.10.2006
St. Jude researchers show that the Six2 gene prevents kidney stem cells from differentiating so they continue to produce specialized cells that help to build the organ

A gene called Six2 plays a critical role in the development of the kidney by keeping a population of "parent" stem cells constantly available to produce the differentiated cells that give rise to specialized parts of the organ, according to investigators at St. Jude Children's Research Hospital. Differentiation is the process by which a progenitor (unspecialized) cell develops characteristics specific to its job in the body.

The kidney stem cells, called mesenchymal blastemal cells, are the source of cells triggered by chemical signals to differentiate into nephrons--the structures in the kidney that cleanse the blood of waste. The nephrons later become attached to ducts--tubes that collect the filtered blood as urine and direct it to the bladder. The St. Jude team showed that Six2 works by preventing some of the precursor cells from responding to these signals. This ensures there will be a continual source of undifferentiated stem cells available to maintain the growth of the kidney.

"Our work shows that Six2 is critical to preventing the developing kidney from running out of stem cells and collapsing into a mass of underdeveloped tissue," said Guillermo Oliver, Ph.D., a member of the St. Jude Genetics and Tumor Cell Biology Department. Oliver is senior author of a report on this finding that appears in the online issue of The EMBO Journal.

... more about:
»Development »Kidney »Six2 »Stem

"Our discovery of Six2's role in the developing kidney suggests that a similar mechanism exists in other developing organs," said Michelle Self, the doctoral student in Oliver's laboratory who did most of the work on this project.

The St. Jude team showed that the kidneys in developing mice lacking the Six2 gene were remarkably smaller than normal mice and were non-functional at birth. In addition, they produced an abnormal excess in the number of nephrons that in turn produced a useless mass of tissue. Furthermore, the remaining precursor cells underwent apoptosis (cell suicide), further depleting the population of stem cells that could give rise to differentiated cells needed to form the kidney.

The researchers also found that Six2 works by suppressing a cascade of genetic interactions normally triggered by a gene called Wnt4, which usually drives the normal development of kidneys.

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: Development Kidney Six2 Stem

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>