Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better sludge through metagenomics

27.09.2006
Researchers seek to master wastewater treatment failures

Few stop to consider the consequences of their daily ablutions, the washing of clothes, the watering of lawns, and the flush of a toilet.

However, wastewater treatment--one of the cornerstones of modern civilization--is the largest microbially-mediated biotechnology process on the planet.

When it works, it is a microbial symphony in tune with humanity. When it fails, the consequences can be dire.

Researchers from the U.S. Department of Energy Joint Genome Institute (DOE JGI) and collaborators at the University of Wisconsin-Madison, and the Advanced Wastewater Management Centre, University of Queensland, Australia, have published the first metagenomic study of an activated sludge wastewater treatment process.

The research appeared online in the September 24 edition of the journal Nature Biotechnology (http://www.nature.com/nbt/journal/vaop/ncurrent/abs/nbt1247.html).

The metagenomic strategy entails generating DNA sequence information directly from samples of sewage sludge to provide a blueprint of the genes and hence the metabolic possibilities of the wastewater environment, with a view to understanding how the system works and predicting and averting failures or crashes.

"This is a first step in a much broader strategy employing a systems biology approach to the study of microbial communities with the goal of designing predictive models to understand how these communities function," said Hector Garcia Martin, lead author of the study and post-doctoral fellow in the DOE JGI's Microbial Ecology Program. "With this information now available, there are opportunities to bioengineer the process to make it more reliable."

Removing excess phosphorus from wastewater can be most economically accomplished by environmentally friendly biological means in a process known as enhanced biological phosphorus removal (EBPR). The researchers were able to obtain a nearly complete genetic blueprint for a key player in this process, the bacterial species Accumulibacter phosphatis.

Activated sludge wastewater treatment processes are used throughout the world to purify trillions of gallons of sewage annually. Many treatment plants employ specialized bacteria to remove the nutrient phosphorus, in an effort to protect lakes and rivers from eutrophication, a deterioration of water quality characterized by excessive algae blooms. Accumulibacter play a vital role in wastewater management, accumulating massive amounts of phosphorus inside their cells.

"Engineers and microbiologists have been trying for 35 years to grow this microbe, with no success," said Trina McMahon, Assistant Professor, Department of Civil and Environmental Engineering, University of Wisconsin, Madison, and one of the study's authors. "Remarkably, through metagenomic techniques, we were able to isolate and acquire the genome sequence of Accumulibacter phosphatis without a pure culture of the organism, which, like most microbes, eludes laboratory culture. We expect that clues hidden in the genome will lead to domestication of this mysterious organism, enabling further studies of its habits and lifestyle.

"The genome sequence will also enable biologists and engineers to understand why and how these organisms accumulate phosphorus, and it will lead to major advances in optimizing and controlling the EBPR wastewater treatment process," McMahon said. "In particular, it makes possible further research into why some wastewater treatment plants occasionally fail. These failures often result in serious pollution of lakes, rivers, and estuaries."

When things go wrong, the environment can be inundated with untreated phosphorous, carbon, and nitrogen--the detritus of human activities--necessitating costly and environmentally taxing remedies and exposing the public to potential disease hazards. The scale is daunting--more than 31 billion gallons of wastewater are treated daily in the U.S. alone. Even a marginal improvement in the process would translate into huge savings and spell relief for environmental engineers.

David Jenkins is Professor Emeritus of Environmental Engineering at the University of California at Berkeley. His research spans some forty years of international professional practice in water and wastewater chemistry and wastewater treatment for government, municipalities, and industry. He has specialized in the chemical precipitation of phosphate from wastewater and sludges, the causes and control of activated sludge bulking and foaming, and biological nutrient removal.

"The findings and tools described in this landmark paper will allow the resolution of many of the questions that have arisen concerning the mechanism by which the enhanced removal of phosphate from wastewater occurs," said Jenkins. "Understanding these mechanisms will undoubtedly lead to more efficient operation of the process and to the development of more robust designs."

Microorganisms are well equipped to do the job, but activated sludge is a black box, at least for those engineers who are dependent on the microbial aspect of the equation. To shed some light on the challenge, the team compared sludge samples from wastewater plants in Madison, Wisconsin, and Brisbane, Australia, that they maintained in laboratory-scale bioreactors to control and monitor the status of the sludge microbial communities.

"We found functions that didn't make sense for the current lifestyle of the organism," said Phil Hugenholtz, head of the JGI's Microbial Ecology Program. "Accumulibacter has all the genes necessary to fix carbon and nitrogen, which it would be compelled to do in a nutrient-poor environment like freshwater, but it presumably wouldn't have much use for in nutrient-rich EBPR sludge. So it got us thinking that these bacteria must be living in natural habitats and that they have become opportunistically adapted to this manmade process, wastewater treatment." It would appear, Hugenholtz went on, that Accumulibacter has been following in humanity's environmental footprints. "The genomes of the bacteria from the two sites were surprisingly similar--practically identical in parts--from samples separated by nearly 9,000 miles."

David Gilbert | EurekAlert!
Further information:
http://www.jgi.doe.gov
http://www.llnl.gov

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>