Researchers to build an artificial “bio-electronic” nose

Professor Hywel Morgan at the University’s School of Electronics & Computer Science (ECS) and Dr Peter Roach at the School of Chemistry and their team have received a European grant (€450k) to create a system that can detect single molecules in biological solutions.

They are using variants of molecules found in biology and creating ‘senses’ from electrical charges caused by the binding of the molecules to mimic the human nose. With this approach, the sensitivity of the device can be a thousand times better than the currently available electronic nose.

The receptors, which will be housed within an artificial membrane, remain in a closed steady state until approached by smell molecules, when they will open and transmit an electrical signal which will indicate the nature of the odour.

Professor Morgan comments: ‘Many medical diseases involve odour. A device such as ours could measure different hormones, diagnose diseases and even sniff for traces of explosives. Most odours are still mapped by humans. If we can find a way to replace this function with technology, we could use odour detection in many new areas’

Media Contact

Helene Murphy alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors