Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists crack genetic secrets of human egg

07.09.2006
The human egg's ability to transform into a new life, or into new cells that may someday save lives, is well documented. The mystery lies in the mechanics - in how a single cell can transform so nimbly.

Scientists at Michigan State University report this week in the Proceedings of the National Academy of Sciences that they have identified genes unique to the human egg. The identification opens the way to understanding these genes' functions, which may lead to solving problems from infertility to degenerative diseases.

"What's in the egg to have that power?" asked Jose Cibelli, MSU professor of physiology and animal science. "Some of those genes are responsible for the magic trick that the egg has. This paper takes a peek at what genes are in the egg waiting to make these changes."

Combined with sperm, the egg divides and organizes cells to ultimately create a human being.

... more about:
»Human »stem cells »thousand

Combined with technology, the unfertilized egg might be coaxed to produce other specific cells, including stem cells, which can be directed to grow into new tissue. This potential could be used to combat diseases.

Cibelli said his team's mission is to grow stem cells without using fertilized embryos, which can be controversial. This work used only unfertilized human eggs that were obtained from women seeking fertility treatment at a clinic in Santiago, Chile. Women at the clinic must be reproductively healthy, no older than 35, and the cause of infertility must lie within the man. This presented the availability of exceptionally healthy eggs, Cibelli said. All the donors granted informed consent for their surplus eggs to be used for this research.

Cibelli worked with researchers in Chile to extract the RNA from the unfertilized eggs soon after they were harvested. That material (a treasure of genetic information,) was frozen and shipped to MSU.

Cibelli's team, Arif Murat Kocabas, Pablo Ross, Zeki Beyhan and Robert Halgren, started analyzing the thousands of genes represented in the human egg to identify those which are unique to the egg. They teamed with Beth Israel Deaconess Medical Center at Harvard Medical School in Boston to work with sophisticated bioinformatics software.

To make a comparison that would show which genes were uniquely active in the human egg, they used RNA of all parts of the human body - except that of the ovaries, where eggs are produced.

Then the computer analysis began. In a highly sophisticated game of match, every gene in the egg that was found in other tissues was eliminated, so that only unique genes remained.

Cibelli said that the team identified 5,331 human genes that are overexpressed in the egg. Of those, 1,430 are mysteries - their function unknown.

The group also compared the human egg genes with those of a mouse as well as human and mouse embryonic stem cells. On the final intersection, 66 genes were found to be common between the four sets of data.

"There are thousands of genes that are redundant. We found about one in a thousand genes that are unique to the eggs - and some of them, they don't have a known function yet," Cibelli said. "Now we can clone these genes and put them into cells and see if they may have a role in the creation of stem cells - without fertilization or destruction of human embryos."

Cibelli believes some of those genes know the big secrets - such as when a cell should slow down and later become a cell that can grow into any cell of the human body. The computer work of this preliminary search will give way to further experiments.

Sue Nichols | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: Human stem cells thousand

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>