Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle cells self-destruct rather than grow with use

01.09.2006
Muscle cells that should grow stronger with use instead self-destruct when a protein called BAG3 isn’t around, researchers have shown.

Mice missing BAG3 seem fine at birth, but when they start using their muscles to breathe and stand, muscle cells rapidly degenerate and cannot regenerate, says Dr. Shinichi Takayama, cell and molecular biologist at the Medical College of Georgia.

The finding illustrates BAG3’s importance in maintaining mature skeletal muscle, researchers say in the September issue of the American Journal of Pathology.

They hope it will lead to prevention of muscle atrophy that characterizes diseases such as muscular dystrophy, heart failure and a lesser-known condition called myofibril myopathy, which affects the tiniest muscle fibers. Dr. Takayama believes his BAG3 knockout is a model for the worst case of this rare disease.

... more about:
»BAG3 »Takayama »Z-disc

“Basically we think that the degeneration starts because of usage of muscles, which should make them stronger,” Dr. Takayama says. Instead, cells previously dormant in utero start dying. “They cannot breathe, they cannot use their muscles and they die quickly,” he says of BAG3 knockout mice.

“When a muscle contraction happens, cytoskeletal degeneration occurs naturally,” he says. Interestingly, degeneration normally stimulates regeneration, but not in these mice. Instead cells take another option: when they can’t be fixed, they kill themselves.

This mass suicide in the absence of BAG3 is not a huge surprise. Dr. Takayama, the first to clone five members of the BAG family, says the proteins help regulate heat shock protein 70, which helps other proteins fold and function properly. The BAG family also has an anti-death function called antiapoptosis. Dr. Takayama is still dissecting the relationship between the anti-death function and BAG’s regulatory role with the heat shock protein. “If protein folding is not happening to a cell, that cell should die, so I think the two functions are related,” he says.

Without BAG3, researchers believe something goes wrong in the supporting structure of Z-discs, which help muscles contract. “The structure is tightly regulated by cytoskeletal proteins and something is wrong in the cytoskeleton of these mice,” he says. They found evidence of changes in the Z-discs that predate cell death, leading them to postulate that BAG3 is required for maintaining the integrity of Z-discs and other supporting components of the muscle cytoskeleton that helps strengthen and organize cells. “The muscle, in structure, seems normal at birth,” Dr. Takayama says. “But after four days, their Z-disc structure is disrupted.” Myofibrils, thin, cylindrical filaments that run the length of muscle cells, then begin to degenerate.

He first cloned BAG1 as an antiapoptotic protein more than 10 years ago while looking for a way to kill cancer cells. “BAG is one of the things that helps cancer cells survive,” says Dr. Takayama. In fact, BAG3 is highly expressed in cancer cells.

Last year, his group’s work published in Nature Neuroscience showed a BAG1 knockout experiences massive brain cell death as an embryo. He’s working on a mouse that over expresses BAG in muscle only, saying that should prevent cell death and atrophy.

The research was funded by the National Institutes of Health and the Muscular Dystrophy Association.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

Further reports about: BAG3 Takayama Z-disc

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>