Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle cells self-destruct rather than grow with use

01.09.2006
Muscle cells that should grow stronger with use instead self-destruct when a protein called BAG3 isn’t around, researchers have shown.

Mice missing BAG3 seem fine at birth, but when they start using their muscles to breathe and stand, muscle cells rapidly degenerate and cannot regenerate, says Dr. Shinichi Takayama, cell and molecular biologist at the Medical College of Georgia.

The finding illustrates BAG3’s importance in maintaining mature skeletal muscle, researchers say in the September issue of the American Journal of Pathology.

They hope it will lead to prevention of muscle atrophy that characterizes diseases such as muscular dystrophy, heart failure and a lesser-known condition called myofibril myopathy, which affects the tiniest muscle fibers. Dr. Takayama believes his BAG3 knockout is a model for the worst case of this rare disease.

... more about:
»BAG3 »Takayama »Z-disc

“Basically we think that the degeneration starts because of usage of muscles, which should make them stronger,” Dr. Takayama says. Instead, cells previously dormant in utero start dying. “They cannot breathe, they cannot use their muscles and they die quickly,” he says of BAG3 knockout mice.

“When a muscle contraction happens, cytoskeletal degeneration occurs naturally,” he says. Interestingly, degeneration normally stimulates regeneration, but not in these mice. Instead cells take another option: when they can’t be fixed, they kill themselves.

This mass suicide in the absence of BAG3 is not a huge surprise. Dr. Takayama, the first to clone five members of the BAG family, says the proteins help regulate heat shock protein 70, which helps other proteins fold and function properly. The BAG family also has an anti-death function called antiapoptosis. Dr. Takayama is still dissecting the relationship between the anti-death function and BAG’s regulatory role with the heat shock protein. “If protein folding is not happening to a cell, that cell should die, so I think the two functions are related,” he says.

Without BAG3, researchers believe something goes wrong in the supporting structure of Z-discs, which help muscles contract. “The structure is tightly regulated by cytoskeletal proteins and something is wrong in the cytoskeleton of these mice,” he says. They found evidence of changes in the Z-discs that predate cell death, leading them to postulate that BAG3 is required for maintaining the integrity of Z-discs and other supporting components of the muscle cytoskeleton that helps strengthen and organize cells. “The muscle, in structure, seems normal at birth,” Dr. Takayama says. “But after four days, their Z-disc structure is disrupted.” Myofibrils, thin, cylindrical filaments that run the length of muscle cells, then begin to degenerate.

He first cloned BAG1 as an antiapoptotic protein more than 10 years ago while looking for a way to kill cancer cells. “BAG is one of the things that helps cancer cells survive,” says Dr. Takayama. In fact, BAG3 is highly expressed in cancer cells.

Last year, his group’s work published in Nature Neuroscience showed a BAG1 knockout experiences massive brain cell death as an embryo. He’s working on a mouse that over expresses BAG in muscle only, saying that should prevent cell death and atrophy.

The research was funded by the National Institutes of Health and the Muscular Dystrophy Association.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

Further reports about: BAG3 Takayama Z-disc

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>