Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientific issues associated with carbon-neutral energy sources such as cellulosic ethanol

08.08.2006
Addressed today at plant science conference by Prof. Chris Somerville

Professor Chris Somerville of the Carnegie Institution and Stanford University, explained advances in plant science research that are both needed and achievable to reduce costs and multiply current levels of production of biofuels from plant cellulose (biomass).

Somerville presented his talk, "Bioenergy: The 21st Century Challenge to Plant Biologists" at the Annual Meeting of the American Society of Plant Biologists (ASPB) today (4:30 p.m. Eastern Time August 5) in Boston's Hynes Convention Center. The presentation was part of the Major Symposium: "Plants Mitigating Global Change" organized by Professor Stephen Long of the University of Illinois at Urbana-Champaign.

Somerville noted the concept that CO2 emissions may negatively affect climate are not new.

"In 1895, Arrhenius presented a paper to the Stockholm Physical Society titled, On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground in which he argued that increased concentration of atmospheric CO2, such as that caused by combustion of fossil fuel, would lead to the warming of the earth," Somerville commented. "It is apparent that he [Arrhenius] was correct and that we must develop alternative sources of energy."

The earth receives approximately 4,000 times more energy from the sun each year than the total projected human uses in the year 2050, Somerville commented. Green plants growing throughout the world capture the sun's (solar) energy and convert it to bio-chemical energy in a process called photosynthesis. There are vast energy supplies of renewable plant biomass growing throughout the nation and world. There is widespread interest in returning to the use of plants as widely used sources of renewable energy

"However, because of competing uses for land, a central challenge for 21st century biologists is to increase the efficiency of solar energy capture to the theoretical limit by rational methods. In order to accomplish this we need to acquire and integrate all aspects of knowledge about plant biology into a systems level understanding that can support an engineering approach to plant improvement," Somerville said.

Somerville explained specific areas of research that need to be addressed during his presentation August 5 in Boston. The Advanced Energy Initiative(AEI), a research initiative announced by President Bush in his 2006 State of the Union Address, embraces key recommendations of Somerville and the plant and microbiological science communities. Somerville called the AEI a visionary research initiative that will help transition the nation's transportation sector to use of domestically produced biofuels. Displacing use of gasoline with biofuels, such as cellulosic ethanol, will dramatically reduce emissions of stored carbon dioxide into the atmosphere, Somerville noted.

This past year, Somerville has been participating in workshops organized by the U.S. Department of Energy Office of Science to address the nation's renewable energy needs. The workshops provided information that contributed to the development of the Advanced Energy Initiative of President Bush. The Advanced Energy Initiative is a landmark research effort designed to help break the nation's addiction to oil. A member of the National Academy of Sciences, Somerville recently published the guest editorial in Science (June 2, 2006, Volume 312) concerning bioenergy research. He is a grantee of the DOE Office of Science's Basic Energy Sciences competitive grant awards program for Energy Biosciences research and member of the DOE Office of Science Biological and Environmental Research Advisory Committee (BERAC). He was the speaker on "Biofuels and the [DOE] Biofuels Workshop Report" at the July 11, 2006 meeting of BERAC.

Brian Hyps | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>