Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three at MIT conceive cell-shaped building

08.08.2006
An innovative cell-shaped building will house a new biomedical research institute in Chengdu, China, thanks to an unusual crossdisciplinary collaboration between Shuguang Zhang, a world-renowned bioengineer and scientist at MIT, his former student, architecture major Sloan Kulper, and computer science and electrical engineering major Audrey Roy.

Kulper (S.B. 2003) and Roy (S.B. 2005) designed the cell-shaped building for the Institute for Nanobiomedical Technology and Membrane Biology in Chengdu, China, the regional capital of Sichuan province in southwestern China. The proposed new facility will contain 170,000 square feet of laboratory, research and meeting spaces; it is slated for construction over the next three years. The building is intended to look like a cell from the outside and to include an assortment of forms inspired by molecular biology inside.

Zhang, associate director of the Center for Biomedical Engineering, will serve as founding advisor of the new Nanobiomedical Institute, to be sited at Chengdu's Sichuan University, where Zhang received his undergraduate degree in biochemistry.

Zhang met Kulper in 2002, when he took Zhang's course, "Molecular Structure of Biological Materials: Structure, Function and Self-assembly."

In the class, Zhang frequently discusses the striking similarities between architecture and biological structures, he said. "Nature has produced abundant magnificent, intricate and fine molecular and cellular structures through billions of years of molecular selection and evolution.

"These invisible molecular and cellular structures cannot be seen by the naked eye, but can only be observed with the most sophisticated scientific tools, such as X-ray diffraction and nuclear magnetic resonance, or modeled with advanced computers. But if they can be amplified billions of times as in a building, then these molecular structures can be seen, touched and admired. At that large scale, they can also be very educational for people of all ages," Zhang said.

According to Zhang, the pioneering design for the cell-shaped building was inspired by "elegantly folded protein structures and their simple and beautiful structural motifs. The cell-shaped building attempts to combine the architecture and the biology structures," he said.

Kulper said the design of the building also arose from the pioneering spirit he discovered among life scientists and biological engineers. "They are always working at the threshold of understanding," Kulper said.

"When I took Shuguang's course, I was thrilled to learn that structural biologists had developed such an amazing language for describing new and complex forms. Also, structural biology is basically concerned with the sort of geometries that architects and designers often work with, though on a completely different scale. It's a very visual field that communicates more through illustration than through symbol," Kulper said.

The seeds of Kulper's involvement in the Sichuan University project began in conversations he had with Zhang, a known admirer of architecture, during the year in which he took Zhang's course. Zhang encouraged Kulper both to apply principles of scientific research to his work in architecture -- "Explore the unknowns and navigate the uncharted territories," he urged -- and to spend time in Zhang's laboratory learning about bioengineering.

The next year, Zhang contacted Kulper with the news that he was now the founding advisor of a new research institute at Sichuan University.

Kulper said, "Zhang offered me the opportunity to develop concepts for the building, which, as a biological research building, would give us an opportunity to design for a client that would appreciate details that referenced biological concepts. I started work on sketches immediately once he had given me some basic information regarding the functional requirements of the building as well as photos of the site in Chengdu."

Zhang said he challenged Kulper with incorporating "as many biology motifs as possible" into his design and with using realistic construction materials.

Zhang then sent Kulper to spend three summer months in Beijing with Roy, where they collaborated on a preliminary design for the building with architects at Tsinghua University's Architectural Design and Research Institute. Roy, currently a software engineer at Silicon Valley startup Sharpcast, Inc., designed and programmed "iQuarium," an interactive media installation on fish fluid dynamics, when she was at MIT.

Kulper characterized the collaboration with his Chinese design teammates as a "highly gratifying, very hybridized process."

Together, the international architecture team "developed sketches and models while simultaneously studying cellular structures that had formal similarities to the spaces we were designing. We worked with images of proteins, membranes and organelles alongside photos and textbook images of glazing systems and cantilevers," Kulper said.

On the exterior design of the building, Roy commented, "Bay windows are scattered throughout the surface of the building, just like proteins in a cell membrane. They serve as convenient meeting places attached to both laboratories and offices."

The final plan calls for a research and laboratory facility with six floors and a crystal-shaped lecture hall with a crystal diffraction pattern ceiling, full of various biology motifs, to be built for about $12 million - more than twice the current cost of a more traditional design in China, yet a small fraction of the cost of building in the United States.

Kulper hopes to visit the construction site in Chengdu in time to catch some of the 2008 Olympics in Beijing, he said.

In the meantime, Zhang has produced a book on the design process for the cell-shaped building. On viewing the renderings of the building, Institute Professor Phillip Sharp commented, "The building is very interesting. I have always wondered what it would be like working within the cell."

Ingemar Ernberg, a tumor biologist from Sweden's Karolinska Institute, not only immediately arranged for a Swedish architect to visit Zhang but also invited Zhang to give a talk to a group of Swedish architects.

As Zhang wrote in the preface of the conceptual design book, "It is hoped that the first molecular bio-architectural design will further stimulate many diverse architectural designs that are inspired from biology structures."

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>