Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinning down a cancer threesome

02.08.2006
Studying mice with skin cancer, researchers at the Swiss Institute for Experimental Cancer Research (ISREC) and EPFL (Ecole Polytechnique Federale de Lausanne) have identified a three-way signaling pathway directly involved in tumor development. Their research, published in the August 1, 2006 issue of Genes and Development, pins down a process that could potentially be manipulated to inhibit the growth of existing carcinomas.

Genetic mutations in our cells accumulate as we age, and carcinomas are associated with alterations in certain key genes, known as tumor suppressor genes and oncogenes. The overexpression of oncogenes disrupts complex cellular signaling pathways and leads to tumor development. However, most oncogenes also play a variety of essential roles in the normal function of a cell. It is extremely difficult to pinpoint the interplay of genetic and cellular events that goes awry when a cell becomes cancerous.

To better understand the intertwined roles of three genes known to be implicated in skin cancer, Professor Andreas Trumpp and PhD student Thordur Oskarsson studied mice that carried a mutated form of one of them, the oncogene Ras. They then genetically engineered mice whose skin cells also lacked another oncogene, c-myc. The c-myc gene is known to be a master regulator in the cell, responsible for controlling several hundred other genes.

Their first surprise was that the mice without the c-myc gene in their skin cells didn't suffer any adverse effects. Unexpectedly, epidermal cells do not require c-myc for survival, normal differentiation or cellular division. However, even more surprising was that these same mice were completely resistant to developing skin cancer, even though they carried the mutated Ras gene, known to drive tumor development. As expected, mice in the control group carrying a normal copy of the c-myc gene developed cancer.

A piece of the puzzle was clearly missing. The researchers found this in a tumor-suppressing gene known as p21. Mutated Ras drastically increases the level of p21 in the cell, and in this way the tumor-causing effects of Ras are held in check, because p21 inhibits uncontrolled proliferation. However, mutated Ras is a vicious oncogene and has found a way to remove the tumor-suppressing effect of p21. It does this by simultaneously driving increased c-myc activity, which in turn eliminates p21. Thus, epidermis with mutated Ras but no c-myc cannot form tumors as p21 remains highly expressed. Trumpp and his colleagues proved the newly uncovered relationship of this cancer threesome by engineering mice lacking both the c-myc and the p21 genes. As predicted, these mice became sensitive to mutated Ras again and developed extensive skin tumors.

"This work is in vivo proof-of-concept of a key pathway in epithelial tumors," remarks Trumpp. "The gene that is truly critical and protects the cells from oncogenic activity is p21. Inhibiting the c-myc pathway was always thought to be unreasonable because this gene is thought to be implicated in so many cellular functions. However, this might prove to be promising avenue for treating existing carcinomas, because it would only affect tumors and not normal skin cells."

Andreas Trumpp | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>