Bacteria give up secrets in war waged on plants

Under study is the bacterial pathogen Pseudomonas syringae, better known as the disease agent of bacterial speck. The pathogen reared its speckled head in tomatoes, causing serious crop loss. Scientist Sheng Yang He describes using P. syringae in the laboratory plant Arabidopsis to get a better understanding of how bacteria set up camp and destroy the plant's ability to fight infection in the July 14 issue of Science Magazine. He is an MSU professor of plant biology, plant pathology, and microbiology and molecular genetics.

The secret weapon: a bacterium's protein targets a plant protein that serves as a line of defense against illness, said Kinya Nomura, a researcher in He's lab and first author on the paper.

“The bacteria targets and disables a plant's defense protein, so they can get in and multiply,” Nomura said. “It's a very nice strategy for bacteria, very clever.”

The P. syringae virulence protein, called HopM1, has been the mechanism mystery. Plant diseases, ranging from bacterial speck in tomatoes and fire blight in apples and pears can devastate crops. Human bacterial pathogens use a similar basic principle to cause diseases.

“Bacterial diseases are generally difficult to control,” said He, who works in the MSU-Department of Energy Plant Research Laboratory. “Molecular studies such as this one may help develop novel disease control measures in the future.”

Media Contact

Sue Nichols EurekAlert!

More Information:

http://www.msu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors