Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Uncover Rules for Gene Amplification

03.07.2006
Gene amplification plays an important role in causing cancers via activation of oncogenes. If scientists can determine the rules as to which segments of genetic material become amplified and how, oncologists and drug researchers may be able to interrupt that process and prevent the formation and growth of some tumors. Using yeast as a model organism, researchers at the Georgia Institute of Technology have discovered that the location of a hairpin-capped break relative to the end of the chromosome will determine the fate of the amplification event

Gene amplification is the increase in copy number of a particular piece of DNA and is a hallmark of tumor cells. Amplified genomic segments are frequently manifested in one of two cytologically recognizable forms. Double minutes are extrachromosomal segments of amplified DNA. Homogeneously staining regions are amplified intrachromosomal segments forming large genomic regions. Some strategies of pharmaceutical research in cancer prevention and treatment could involve curbing cancer development via restricting gene amplification. The first step towards achieving this is to discover the rules that govern whether an amplification event is a double minute or a homogenously-staining region.

It’s known that regions of chromosomes that are prone to amplification have palindromic sequences of DNA, which are weak places where the chromosome can break. These palindromic sequences can be naturally found in human genome. The distribution of such sequences can vary from one individual to another. Researchers at the Georgia Institute of Technology have discovered that a particular type of DNA break, a hairpin-capped double strand break, induced by these palindromic sequences, is a precursor to amplification.

“We have a developed a system in yeast which would mimic the situation in human cancer cells wherein oncogenes might be located next to palindromic sequences. Using this system we have discovered the rules that determine how double minutes or homogeneously staining regions can be generated,” said Kirill Lobachev, assistant professor in Georgia Tech’s School of Biology.

“If these rules operating in yeast can be extended to higher eukaryotes then we can propose that if the oncogene is located between the hairpin-capped break and the telomere, then the amplification event will result in a double minute. If the break occurs between the oncogene and the telomere, then the amplification would yield a homogenously-staining region.” adds Vidhya Narayanan a Ph.D. student in Kirill Lobachev’s lab and first author of the study.

The findings can help researchers understand the cause of cancer in diseased individuals and also to potentially identify individuals who might be prone for cancer.

In addition to Lobachev and Narayanan, the research team consisted of Hyun-Min Kim from Georgia Tech and collaborators Piotr A. Mieczkowski and Thomas D. Petes from Duke University. This work was supported by funds from National Science Foundation and National Institute of Health.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>