Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reverse Parkinson's symptoms in animal models

26.06.2006
Statistics for neurological disorders are grim. More than a million Americans suffer from Parkinson's disease alone--a number that is expected to soar over the next few decades as the population ages. No current therapies alter the fundamental clinical course of the condition.

Now, scientists at Whitehead Institute, in collaboration with colleagues at several research centers, including the University of Missouri's School of Biological Sciences, have identified a key biological pathway that, when obstructed, causes Parkinson's symptoms. Even more importantly, they have figured out how to repair that pathway and restore normal neurological function in certain animal models.

"For the first time we've been able to repair dopaminergic neurons, the specific cells that are damaged in Parkinson's disease," says Whitehead Member and Howard Hughes Medical Institute Investigator Susan Lindquist, senior author on the paper that will be published June 22 online in Science.

In 2003, researchers in the Lindquist lab described using yeast cells as "living test tubes" in which they could study Parkinson's. A paper published in Science reported that when a Parkinson's-related protein called alpha-synuclein was over-expressed in these cells, clumps of misshapen proteins gathered near the membrane, and in many cases the cells either became sick or died.

Aaron Gitler and Anil Cashikar, postdoctoral researchers in the Lindquist lab, decided to follow up on these results by asking a simple question: Is it possible to rescue these cells when an over-expression of alpha-synuclein would normally makes them sick?

They began with an array of yeast cells in which each cell over-expressed one particular gene. This array, prepared by scientists at the Harvard Institute of Proteomics, covers the entire yeast genome. All cells were also infected with alpha-synuclein. They reasoned that if they identified genes whose over-expression rescued a cell, that would tell them something about how alpha-synuclein made the cell sick in the first place.

Most of the proteins that they identified pointed to a pathway that involves two cellular organelles, the endoplasmic reticulum (ER) and the Golgi. The ER is the cell's protein factory, where proteins assume their requisite shapes. Once a protein has properly folded, it is trafficked over to the Golgi, where it is fine-tuned and further prepared for its designated task.

Working with Antony Cooper from the University of Missouri, Kansas City, Lindquist's team demonstrated that when alpha-synuclein becomes mutated and clumps at the cell surface, it manages to drag away a protein that helps transport between the ER and the Golgi. Proteins are blocked from navigating this crucial route, and the cell dies.

This isn't just a general toxic effect caused by any misfolded protein. It is specific to alpha-synuclein, the protein associated with Parkinson's Disease.

"All this was done in yeast," says Gitler. "Our next goal was to find out what this told us about actual neurons."

If mutations of alpha-synuclein dragged the ER/Golgi transport protein away from doing its job, as the yeast research indicated, then cell death might be averted simply by increasing the levels of this transport protein. Working with colleagues at University of Pennsylvania, University of Alabama, and Purdue University, the consortium tested this hypothesis in the fruit fly, C. elegans worm, and in neurons culled from rats--all of which had alpha-synuclein-induced Parkinson's symptoms. In every case, symptoms were reversed by increasing levels of this transport protein.

"We tried this a number of different ways, from creating transgenic animals that naturally over-expressed this protein, to injecting a copy of the gene for this transport protein into the neurons through a gene-therapy technique," says Gitler. "In all cases the results were the same. Cell death ceased, and the neurons were restored to normal health."

"Protein folding problems are universal, so we hoped we could use these simple model organisms to study something as deeply complex as neurodegenerative disease," says Lindquist, who is also a professor of biology at MIT. "Most people thought we were crazy. But we now not only have made progress in understanding this dreadful disease, but we have new platform for screening pharmaceuticals."

These findings also help explain why biopsies from Parkinson's patients indicate stress in the ER of dopaminergic neurons.

"This gives a whole new direction for understanding what's been going wrong in these patients, and for considering much better strategies for treating people," says Cooper.

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>