How mice help us to understand acute pancreatitis

In order to develop urgently needed specific medical treatment strategies for acute pancreatitis, a better understanding of the pathophysiology during the onset of acute pancreatitis is necessary. The anatomic position and relationships of the pancreas make direct observation of pancreatic pathology and biopsies difficult or almost impossible. Therefore, most of our pathophysiological concepts are based on animal studies. Several animal models of acute pancreatitis have been developed. By this, it is hoped that clues into human pathophysiology become possible.

Major progress has been made with the employment of molecular biology techniques. With the sequencing of the mouse genome, various strategies are possible to prove a causal effect of a single gene or protein, using either gain-of-function (i.e., overexpression of the protein of interest) or loss-of-function studies (i.e., genetic deletion of the gene of interest). The availability of transgenic mouse models and gene deletion studies has clearly increased our knowledge about the pathophysiology of acute pancreatitis and enables us to study and confirm in vitro findings in animal models.

In addition, transgenic models with specific genetic deletion or overexpression of genes help in understanding the role of one specific protein in a cascade of inflammatory processes such as pancreatitis, where different proteins interact and co-react.

Two papers published in the journal Digestion give an overview of the current state of research, as well as the problems and questions still to be investigated.

Media Contact

Carla Holmes alfa

More Information:

http://www.karger.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors