Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIAI finding gives boost to bioinformatics use in fighting disease

19.06.2006
Researchers prove 95 percent accuracy in extremely complex virus

The use of computers to advance human disease research – known as bioinformatics -- has received a major boost from researchers at the La Jolla Institute for Allergy & Immunology (LIAI), who have used it to successfully predict immune response to one of the most complex viruses known to man – the vaccinia virus, which is used in the smallpox vaccine. Immune responses, which are essentially how the body fights a disease-causing agent, are a crucial element of vaccine development.

"We are excited because this further validates the important role that bioinformatics can play in the development of diagnostic tools and ultimately vaccines," said Alessandro Sette, Ph.D., an internationally known vaccine expert and head of LIAI's Emerging Infectious Disease and Biodefense Center. "We've shown that it can successfully reveal – with a very high degree of accuracy -- the vast majority of the epitopes (targets) that would trigger an effective immune response against a complex pathogen."

Bioinformatics holds significant interest in the scientific community because of its potential to move scientific research forward more quickly and at less expense than traditional laboratory testing.

The findings were published this week in a paper, "A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus," in the online version of the journal Nature Biotechnology. LIAI scientist Magdalini Moutaftsi was the lead author on the paper.

While bioinformatics – which uses computer databases, algorithms and statistical techniques to analyze biological information -- is already in use as a predictor of immune response, the LIAI research team's findings were significant because they demonstrated an extremely high rate of prediction accuracy (95 percent) in a very complex pathogen – the vaccinia virus. The vaccinia virus is a non-dangerous virus used in the smallpox vaccine because it is related to the variola virus, which is the agent of smallpox. The scientific team was able to prove the accuracy of their computer results through animal testing.

"Before, we knew that the prediction methods we were using were working, but this study proves that they work very well with a high degree of accuracy," Sette said.

The researchers focused their testing on the Major Histocompatibility Complex (MHC), which binds to certain epitopes and is key to triggering the immune system to attack a virus-infected cell. Epitopes are pieces of a virus that the body's immune system focuses on when it begins an immune response. By understanding which epitopes will bind to the MHC molecule and cause an immune attack, scientists can use those epitopes to develop a vaccine to ward off illness – in this case to smallpox.

The scientists were able to find 95 percent of the MHC binding epitopes through the computer modeling. "This is the first time that bioinformatics prediction for epitope MHC binding can account for almost all of the (targeted) epitopes that are existing in very complex pathogens like vaccinia," said LIAI researcher Magdalini Moutaftsi. The LIAI scientists theorize that the bioinformatics prediction approach for epitope MHC binding will be applicable to other viruses.

"The beauty of the virus used for this study is that it's one of the most complex, large viruses that exist," said Moutaftsi. "If we can predict almost all (targeted) epitopes from such a large virus, then we should be able to do that very easily for less complex viruses like influenza, herpes or even HIV, and eventually apply this methodology to larger microbes such as tuberculosis."

The big advantage of using bioinformatics to predict immune system targets, explained Sette, is that it overcomes the need to manufacture and test large numbers of peptides in the laboratory to find which ones will initiate an immune response. Peptides are amino acid pieces that potentially can be recognized by the immune system. "There are literally thousands of peptides," explained Sette. "You might have to create and test hundreds or even thousands of them to find the right ones," he said. "With bioinformatics, the computer does the screening based on very complex mathematical algorithms. And it can do it in much less time and at much less expense than doing the testing in the lab."

The LIAI scientific team verified the accuracy of their computer findings by comparing the results against laboratory testing of the peptides and whole infectious virus in mice. "We studied the total response directed against infected cells," Sette said. "We compared it to the response against the 50 epitopes that had been predicted by the computer. We were pleased to see that our prediction could account for 95% of the total response directed against the virus."

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>