Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some Genetic Research is Best Done Close to the Evolutionary Home

14.06.2006
Some aspects of evolution are like the real estate business in that it’s all about location, location, location! Researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the DOE Joint Genome Institute (DOE JGI) have shown that when it comes to comparing evolutionarily conserved DNA sequences that regulate the expression of genes, more closely related species are best.

“While one can compare distant vertebrates to humans and identify sequences that are highly evolutionarily conserved, such elements are few and far between,” said Len Pennacchio, a geneticist with Berkeley Lab’s Genomics Division and the head of JGI’s genome analysis program. “In contrast, by comparing species that are more closely related, such as other mammals, we can find much more DNA sequence alignment.”

Pennacchio and Shyam Prabhakar are the principal authors of a paper that appears in the June issue of the publication Genome Research, which presents the results of a comparative genomics study that quantified the advantages of staying close to the evolutionary home. Other co-authors of the paper were Francis Poulin, Malak Shoukry, Veena Afzal, Edward Rubin and Olivier Couronne.

When Mother Nature develops something that works, she tends to stick with it. Hence sequences of DNA that serve as protein-coding genes or enhancers that regulate the expression of those genes have been conserved through thousands of years of evolution. Gene hunters have capitalized on this tendency by comparing the DNA of different species to identify genes and determine their functions. For example, the genome of the Fugu fish contains essentially the same genes as the human genome but carries them in approximately 400 million bases as compared to the three billion bases that make up human DNA.

Cross-species DNA sequence comparisons have also been used to identify the enhancers that regulate genes – meaning they control whether a gene is switched on or off — but until now, the relative merits of comparing species as diverse as humans and fish were not known.

“To address this problem, we identified evolutionarily conserved non-coding regions in primate, mammalian and more distant species using a uniform approach that facilitates an unbiased assessment of the impact of evolutionary distance on predictive power,” said Pennacchio. “We benchmarked computational predictions against previously identified regulatory elements at diverse genomic loci, and also tested numerous extremely conserved sequences in humans and rodents for enhancer activity.”

The computational algorithm, which is used to provide a uniform evaluation of the benefits and limitations of DNA sequence comparisons between close versus distant species, was developed by Prabhakar. He dubbed this program “Gumby,” after a mathematical concept called the Gumbel distribution. Prabhakar’s Gumby program has now been incorporated into VISTA, the comprehensive suite of programs and databases for comparative analysis of genomic sequences that was developed and is maintained at Berkeley Lab.

Using the Gumby program, Prabhakar, Pennacchio and their colleagues were able to identify human regulatory DNA sequences with a sensitivity that ranged from 53 to 80 percent, and a true-positive rate that ran as high as 67 percent based on comparisons with primates and other eutherian (placental) mammals. By contrast, comparisons with more distant species, including marsupial, avian, amphibian and fish, failed to identify most of the empirically defined functional non-coding DNA sequences.

Said Prabhakar, “Our results highlight the practical utility of close sequence comparisons, and the loss of sensitivity entailed by more distant comparisons. The intuitive relationship we derived between ancient and recent non-coding sequence conservation from whole-genome comparative analysis explains most of the observations from empirical benchmarking.”

This research was supported by the National Heart, Lung, and Blood Institute, through its Program for Genome Applications.

Berkeley Lab is a U.S. Department of Energy National Laboratory located in Berkeley, CA. It conducts unclassified scientific research and is managed by the University of California. Visit our Website at http://www.lbl.gov/.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>