Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First whole-genome scan for links to OCD reveals evidence for genetic susceptibility

12.06.2006
A federally funded team of researchers including several from Johns Hopkins have identified six regions of the human genome that might play a role in susceptibility to obsessive compulsive disorder, or OCD. The study was published online June 6 in Molecular Psychiatry.

"OCD once was thought to be primarily psychological in origin," says Yin Yao Shugart, Ph.D., statistical geneticist and associate professor of epidemiology at the Johns Hopkins Bloomberg School of Public Health. "But now there is growing evidence that there is a genetic basis behind OCD, which will help us better understand the condition," she says.

OCD is characterized by intrusive and senseless thoughts and impulses that together are defined as obsessions, as well as repetitive and intentional behaviors, referred to as compulsions. OCD is estimated to affect up to 3 percent of the American population.

In what the research team describes as the first whole-genome scan to look for genetic "markers" or similarities in the genomes of people with OCD, results identified six potentially significant regions in the genome, which lie on five different chromosomes that appear "linked" to OCD. It's likely that any genes directly associated OCD are to be found in these regions.

"We've long suspected that, rather than being caused by a single gene, OCD has multiple genetic associations," says Jack Samuels, Ph.D., an epidemiologist and assistant professor of psychiatry at the Johns Hopkins School of Medicine.

To conduct the study, the researchers collected blood samples from 1,008 individuals from a total of 219 families in which at least two siblings were clinically diagnosed with OCD.

DNA from each sample was analyzed by the Hopkins Center for Inherited Disease Research (CIDR) using both molecular biology and statistical analysis computer programs. Specific DNA sequences – known as genetic markers – on chromosomes 1, 7, 6, and 15 and two markers on chromosome 3 appear more frequently in the patients with OCD than in those without it. The researchers want to further analyze the genetic regions they identified in this report and use more markers to possibly narrow down these regions to identify OCD risk genes.

The researchers suggest that whatever genes are found don't directly cause OCD but increase risk for it in conjunction with other genes or environmental factors.

"OCD is a relative newcomer to these genetic linkage studies," says Shugart, "so it's extremely important to follow up these findings by looking at more families and using more markers to assess the role of gene-environment interactions in OCD. "We are also very interested in finding genes underlying the different subtypes of OCD," she says.

Careful genetic analysis of different clinical categories of OCD has been limited by currently existing computer programs used in analyzing this type of data. The vast amount of data used in whole-genome analysis requires fine-tuned statistical calculations. The research team is eager to develop new methods in this area. "We predict that such findings may have immediate clinical implications for OCD patients," says Shugart.

Audrey Huang | EurekAlert!
Further information:
http://www.cidr.jhmi.edu/
http://www.hopkinsmedicine.org/ocd/default.asp

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>