Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-cost microfluidics can be a sticky problem

16.05.2006
A deceptively simple approach to bonding thermoplastic microchannel plates together with solvent could be used for low-cost, high-volume production of disposable "lab-on-a-chip" devices, according to researchers from the National Institute of Standards and Technology (NIST) and George Mason University (GMU).

Microfluidics is considered a highly promising technology for performing rapid and inexpensive chemical and biochemical analyses. The defining feature of microfluidics is the use of tiny channels less than a fraction of a millimeter wide to move samples and reagents through the device. For high-volume production, the channels likely will be molded or embossed in high-quality thermoplastic and then sealed with a cover plate. Bonding the two pieces together securely without blocking or altering the tiny channels is a key manufacturing issue.

One approach is to weld the two plates together by clamping them and heating the plastic to the point where the polymer chains begin to diffuse together. This requires just the right combination of time, pressure and temperature--which unfortunately has to be fine-tuned for each new lot of plastic. The other method is to weld the pieces with a solvent-type glue, like a model plane, but as model-builders will appreciate, the problem is keeping the glue where you want it and away from where you don’t want it.

In a recent paper in Analytical Chemistry,* a team from NIST and GMU suggest that the answer is simple: use the channels. They clamp the two plates together, inject a tiny amount of solvent at one end of the network of channels and apply vacuum at the other end. As the solvent is sucked through the channels, too fast to clog them, a minute amount is drawn between the plates by capillary action and welds them together. Total welding and incubating time: about 8 minutes. To demonstrate utility, the team successfully performed high-efficiency electrophoretic separation of 400-base single-strand DNA ladders, a typical microfluidics application, in the devices fabricated using the technique.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov
http://pubs.acs.org/cgi-bin/abstract.cgi/ancham/asap/abs/ac051883l.html

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>