Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-cost microfluidics can be a sticky problem

16.05.2006
A deceptively simple approach to bonding thermoplastic microchannel plates together with solvent could be used for low-cost, high-volume production of disposable "lab-on-a-chip" devices, according to researchers from the National Institute of Standards and Technology (NIST) and George Mason University (GMU).

Microfluidics is considered a highly promising technology for performing rapid and inexpensive chemical and biochemical analyses. The defining feature of microfluidics is the use of tiny channels less than a fraction of a millimeter wide to move samples and reagents through the device. For high-volume production, the channels likely will be molded or embossed in high-quality thermoplastic and then sealed with a cover plate. Bonding the two pieces together securely without blocking or altering the tiny channels is a key manufacturing issue.

One approach is to weld the two plates together by clamping them and heating the plastic to the point where the polymer chains begin to diffuse together. This requires just the right combination of time, pressure and temperature--which unfortunately has to be fine-tuned for each new lot of plastic. The other method is to weld the pieces with a solvent-type glue, like a model plane, but as model-builders will appreciate, the problem is keeping the glue where you want it and away from where you don’t want it.

In a recent paper in Analytical Chemistry,* a team from NIST and GMU suggest that the answer is simple: use the channels. They clamp the two plates together, inject a tiny amount of solvent at one end of the network of channels and apply vacuum at the other end. As the solvent is sucked through the channels, too fast to clog them, a minute amount is drawn between the plates by capillary action and welds them together. Total welding and incubating time: about 8 minutes. To demonstrate utility, the team successfully performed high-efficiency electrophoretic separation of 400-base single-strand DNA ladders, a typical microfluidics application, in the devices fabricated using the technique.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov
http://pubs.acs.org/cgi-bin/abstract.cgi/ancham/asap/abs/ac051883l.html

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Some brain tumors may respond to immunotherapy, new study suggests

11.12.2018 | Studies and Analyses

Researchers image atomic structure of important immune regulator

11.12.2018 | Health and Medicine

Physicists edge closer to controlling chemical reactions

11.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>