Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acidity in the brain could hold the key to stroke treatment

16.05.2006
Development of a new technique for detecting brain damage caused by stroke has been boosted up by a £1m grant to scientists at The University of Manchester. Professor Gareth Morris of the School of Chemistry and Professor Risto Kauppinen of the University of Birmingham are to lead the development of a new non-invasive technique which measures acidity (pH) in the brain.

A stroke is caused when part of the blood supply to the brain is cut off. This causes acidity in the brain to build up, leading to damage.

CT scans are currently used to detect bleeding, swelling and tumours in the brain, but the visibility of soft tissue is very limited, making damage difficult to detect.

Professors Morris and Kauppinen will use advanced Nuclear Magnetic Resonance (NMR) technologies to allow MRI scanners to create detailed images of pH in the brain.

The images will be used to compare healthy (neutral, pH 7) and damaged (acidic, lower pH) areas of the brain, and to measure how the pH of the brain changes over time, with the aim of providing more targeted and effective treatments.

Professor Morris said: “Within two to three years we hope to have developed an NMR technique which can be translated into a machine that can image acidity in the brain.

“If we can map stroke damage accurately, doctors will have a better chance to provide more targeted and effective treatment. Current techniques often only enable one to see damage once it is too late to intervene.”

NMR will be used to measure the rate at which hydrogen ions are exchanged between water and proteins in the brain. Acidity causes this rate to increase, changing the NMR signal of water.

The grant, from the Engineering and Physical Sciences Research Council, will fund three new NMR instruments in the university’s School of Chemistry, which is the second largest university Chemistry department in the UK and one of the largest in Europe. The new instruments will also support a wide range of other developments in organic, inorganic and materials chemistry.

Simon Hunter | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>