Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings help pinpoint autism’s genetic roots

05.05.2006


By deleting a gene in certain parts of the brain, researchers at UT Southwestern Medical Center have created mice that show deficits in social interaction that are reminiscent of humans with autism spectrum disorders.



The investigators also found physical abnormalities in the brains that mimic some cases of autism, showing that the research animals can be useful in studying the mysterious condition.

The finding — to be published in the May 4 issue of the journal Neuron — confirms recent indications that a mutation in this particular gene could cause at least some forms of autism, said Dr. Luis F. Parada, director of the Center for Developmental Biology and the study’s senior author. Dr. Parada also directs the Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration.


"The exciting thing about this mouse is it helps us to zero in on at least one anatomic location of abnormality, because we targeted the gene to very circumscribed regions of the brain," he said. "In diseases where virtually nothing is known, any inroad that gets into at least the right cell or the right biochemical pathway is very important."

Autism is a brain disorder in which people have trouble with communication and social interaction and engage in repetitive movements. Usually manifesting in childhood, it affects about one in every 250 people, primarily males.

The researchers focused on a gene called Pten, which is also known to suppress cancers in humans. Some people with autism have mutations in Pten, but it has been unclear if that’s what causes the disease, Dr. Parada said. To test that hypothesis, the researchers deleted the gene in the front of the mouse brain and in areas of the hippocampus, a structure involved in memory and other functions.

Mice, which are social animals, are a good model for studying the disease, Dr. Parada said. Their behavior can be studied when they are exposed to other mice, when they are provided with inanimate objects and material for making nests, and when they are placed in unfamiliar environments.

In each of those conditions, the mutant mice were distinctly different from normal mice that came from the same litter.

Mice lacking the Pten gene were generally uninterested in unfamiliar mice, while normal mice approached the strangers. When mutant mice were exposed to both an inanimate object and another mouse, they showed about equal interest in each — echoing the way children with autism prefer toys to people — while the normal mice preferred the other mouse.

When given raw material for nesting, the mutants ignored it, while the normal mice teamed up to build nests. And the pups of mutant females often died from lack of maternal care.

The genetically altered mice were also hypersensitive to stressful stimuli, such as being picked up, being subjected to a sudden noise, or being put in a lighted or open area. People with autism are similarly overly sensitive to sensory stimuli.

The mutant mice’s brains were also noticeably altered in the areas where the gene was deleted. The nerve cells were thicker than normal and had a higher-than-normal number of connections to other nerve cells. This may lead to the sensory overload that people with autism experience, Dr. Parada said.

"It would be really exciting if it turned out that we’ve zeroed in on the anatomical regions where things go wrong in autistic patients, regardless of how the autism occurs," he said, adding that the next step in the research is to treat the mice with drugs to see whether it’s possible to reverse the condition.

Autism-like syndromes are being studied at UT Southwestern from another angle through the work of Dr. Lisa Monteggia, assistant professor of psychiatry.

Her investigation of the role of a gene called MeCP2 in mediating autistic-like behavior has been published recently in the journals Biological Psychiatry and Current Biology. Mutations in MeCP2 occur in a pervasive developmental disorder called Rett syndrome, a human disease that shares many clinical features with autism. Mutations in MeCP2 also have been identified in autism patients.

In Biological Psychiatry, she described how the selective deletion of MeCP2 in the brains of mice — in similar areas as those targeted by Dr. Parada — creates many of the features of Rett syndrome that are also observed in autism patients, including reduced social interaction, abnormal repetitive behavior and increased anxiety.

Current Biology reported her collaborative study with Dr. Ege Kavalali, associate professor in the Center for Basic Neuroscience, in which recorded signals from nerve cells in the mouse brain showed that in those lacking MeCP2, there was an imbalance between signals that excite nerve cells and those that inhibit neural activity. Such an imbalance in nerve transmission has been hypothesized as a feature of human autistic disorders; however, this is the first report demonstrating such an imbalance.

Lead authors in the Pten study from the Center for Developmental Biology were Dr. Chang-Hyuk Kwon, postdoctoral researcher; former graduate student Bryan Luikart, now at Oregon Health & Science University; and Dr. Craig Powell, assistant professor of neurology and psychiatry at UT Southwestern.

The work was supported by the American and Lebanese Associated Charities, the National Institutes of Health and the American Cancer Society.

UT Southwestern scientists participating in the MeCP2 research were Erika Nelson, student research assistant in psychiatry, and Terry Gemelli, former research associate in psychiatry.

Dr. Monteggia’s research is supported in part by the National Alliance for Autism Research, Once Upon A Time …, and the Rett Syndrome Research Foundation.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>