Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Picking the best parent for your chicks

19.04.2006
The local boy with the most bling is a good choice in the spring, but as summer progresses a girl bird’s best bet is a stranger.

Who’s chosen by whom in the mating game is determined by seasonal changes in the genetic diversity of available mates, according to new research based on a 10-year study of wild finches.


A pair of house finches showing the bright breeding plumage of the male. Photo credit: Alex Badyaev.


Three male house finches, all with slightly different red mating plumage, strut their stuff in front of a female house finch. Photo credit: Alex Badyaev.

The finding helps explain a long-standing evolutionary biology paradox.

Previous research has shown that female birds often go for the flashier guys. Many biologists argue that sexual selection -- competition for mates -- is the driving force behind the evolution of such elaborate and seemingly useless getups as a male peacock’s tail.

"For such elaborate traits to evolve, you have to have mating patterns where everyone wants the same thing," said lead researcher Kevin P. Oh of The University of Arizona in Tucson.

But if everyone mates with the same perfect-looking individual, ultimately that would result in inbreeding, he said.

Particularly healthy kids are produced when the parents are genetically different -- what biologists call complementarity. However, choosing one’s genetic better half would generate more diversity in looks, rather than pushing the population toward a uniform dandified appearance.

Alexander V. Badyaev, principal investigator for the UA study, said, "Even though preference for genetically complementary mates is widely documented, it’TMs always puzzled people that individual differences in mate preference do not prevent the evolution of elaborate ornaments."

It all comes down to who’s available when a bird is ready to breed, said Oh and Badyaev. Early on, the available mates aren’t genetically diverse but some males are very flashy. Later in the season, females who arrive from out of town may not find a flashy male, but can end up with a stranger with genes different from her own.

The whole system is driven by the fact that female birds generally leave home to breed, while the males stay put and breed near their birthplace.

The researchers found that having two seasonal rounds of mate choice, where the second round lessens the inbreeding that would result from the first, not only provides a new explanation of how birds choose mates, but also may apply to other members of the animal kingdom.

Oh, a doctoral student in UA’s department of ecology and evolutionary biology, and Badyaev, an assistant professor in the same department, will publish their research paper, "Adaptive genetic complementarity in mate choice coexists with selection for elaborate sexual traits" in an upcoming issue of Proceedings of the Royal Society B. The National Science Foundation funded the research.

Since 1995, Badyaev has been intensively studying a population of house finches (Carpodacus mexicanus) in one site near Missoula, Mont. He now knows intimate details about the lives of approximately 12,000 finches.

During the breeding and nesting season, Badyaev and his team capture birds every day to band and photograph them, take DNA samples and body measurements and track their hormonal status throughout the season.

The photos and biochemical analysis of the males’ ornamental feathers, which range from dull yellow to deep purple, record how bright the male is in relation to other males.

To determine each bird’s genetic make-up, the researchers use a technique called microsatellite DNA genotyping. They also track birds’TM hormonal profiles and ovulation cycles to determine each female’s fertilization window.

The team also locates all the nests, keeps track of activity in the nest and takes DNA samples from the chicks. Badyaev said, "We have 10 sequential generations of wild birds completely genotyped -- it’s never been done before."

The researchers know who was available for mating at any particular point in time, who actually mated with whom, who their kids are and whether their kids survived. The team even knows who participated in "extramarital" trysts that resulted in offspring.

Badyaev said, "We found that each female has about a 10-day period during which mating will result in fertilization." He added, "We thus can see, for each female, whether the male she chose was indeed the most colorful or the most genetically diverse of all males available during her fertility window."

Early in the season, females picked the reddest guy around, not the one most genetically different from her, the researchers found.

As the flashiest males got snatched up, females arriving later had different choices. Those out-of-towners, genetically different from the locals, ended up with mates that were genetically different from themselves.

And for birds who snuck out for some sex on the side, the researchers found those birds likely chose an out-of-town partner who was more genetically different than their regular mate.

It’s a good thing opposites attract, the researchers found -- baby birds with the best survival rates had parents who were dissimilar genetically.

Oh said the team’s research shows that basic ecological processes by which young females disperse and males stay home creates seasonal cycles of variability in sexual ornamentation and genetic diversity. That overall pattern makes it easy for birds to find their genetic better half and simultaneously enables the evolution of elaborate sexual displays.

Oh and Badyaev are now doing a similarly intensive study of house finches on the UA campus to see if their findings hold up for birds living in different environment.

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>