Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device could cut chemotherapy deaths

03.04.2006
A new method of delivering chemotherapy to cancer patients without incurring side effects such as hair loss and vomiting is being developed.

The method, produced at the University of Bath, involves using tiny fibres and beads soaked in the chemotherapy drug which are then implanted into the cancerous area in the patient’s body.

These fibres are bio-degradable and compatible with body tissue, which means they would not be rejected by the patient’s body. They gradually turn from solid to liquid, releasing a regular flow of the chemotherapy chemical into the cancer site, and a much lower dose to the rest of the body.

This is a more localised way of killing cancer cells than the current method of injecting the chemical into a cancer sufferer’s vein so that it is carried around the body.

As well as reducing the side-effects, the new drug delivery vehicle, known as Fibrasorb, could also cut the numbers of patients who die from the effects of chemotherapy because they need such high doses to tackle their cancer.

The method, developed by Dr Semali Perera, of the University’s Department of Chemical Engineering, over the past few years, has successfully gone through preliminary laboratory trials. The first clinical trials on volunteer patients with ovarian cancer in Avon, Somerset and Wiltshire could begin in the next few years and, if successful, the technology could be put into general use.

The research team at Bath is collaborating closely with the Avon, Somerset and Wiltshire Cancer Centre and the oncology team at the Royal United Hospital for the design and development of these drug delivery vehicles. This team includes Dr Ed Gilby, one of the most experienced consultant oncologists, surgeons Mr Nicholas Johnson and Mr Kenneth Jaaback, clinical trials experts and specialist nurses such as Tracie Miles.

“Side effects from chemotherapy can be very unpleasant and sometimes fatal,” said Dr Perera.

“The new fibres and beads could cut out some side-effects entirely, including nausea and vomiting, and could reduce the number of people who die each year.

“Although the first study will be on patients with ovarian cancer, soon we hope that other cancer sufferers with solid tumours will benefit.

“Give that around one in eight people worldwide die of cancer, this could be a vitally important step in the treatment of this disease.

“We have now assembled an extremely experienced team to develop the Fibrasorb technology."

The Fibrasorb technology is a flexible fully resorbable device that can be formulated as a bead, a fibre or mesh, or as a tube put into the body which leads outside the body and through which drugs can be fed.

For the pre-clinical studies, funded by the Department of Health, Dr Perera will be working closely with Dr Vasanta Subramanian, a lecturer in the University’s Department of Biology & Biochemistry. Dr Subramanian is a cell and molecular biologist with extensive research experience in gastrointestinal cancers and stem cells in the gastrointestinal tract.

Dr Perera has also been working with the University’s Department of Pharmacy & Pharmacology to make the fibres more sterile so they cannot be attacked by harmful bacteria.

Dr Perera said that other researchers had worked on using tiny beads as a way of delivering drugs locally, but the new system showed greater promise because it could achieve better control when delivering the drug.

A patent application has been filed on the drug delivery system, and drug companies across the world are expected to express great interest in the new technology.

Tony Trueman | alfa
Further information:
http://www.bath.ac.uk

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>