Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke engineers building ’erasible’ detectors, ’nanobrushes’ and DNA ’highrises’

30.03.2006
A Duke University engineering group is doing pioneering work at very diminutive dimensions. Their basic studies could lead to genetically engineered proteins that can form erasable chemical detectors; self-grown forests of molecular "bottlebrushes" that keep themselves contamination-free; and auto-assembled DNA "towers" that could become anchors for the tiniest of devices.

Professor of biomedical engineering Ashutosh Chilkoti of Duke’s Pratt School of Engineering will describe such advances in designing bio-detectors and structures scaled in the millionths and billionths of a meter in a Wednesday, March 29, 2006, talk at the American Chemical Society’s 231st national meeting in Atlanta. He will speak at a session beginning at 8:30 a.m. in the Juniper Room in Atlanta’s OMNI at CNN Center. His group’s work is supported by the National Science Foundation, the National Institutes of Health and Duke’s Center for Biologically Inspired Materials and Materials Systems.

The proposed erasable detectors are made of artificial elastin-like polypeptides (ELPs), which are short segments of proteins normally soluble in water. Crafted through genetic engineering with the aid of bacteria, such ELPs have the useful property of coming out of a solution to form a solid whenever a slight temperature increase or other alterations to the water induces a phase change.

Chilkoti’s group reported in the November 1999 issue of the journal Nature Biotechnology that an ELP could also be chemically linked with another protein so that both "fusion proteins" leave solution together after such phase changes.

Following that discovery, for which Duke has applied for a patent, Chilkoti’s team reported in the February 2003 issue of Analytical Chemistry that this method could be used to create a "reversible" protein sensor on a glass slide.

After dotting such a slide with microscopic amounts of surface-bound ELPs, the researchers discovered that dissolved fusion proteins would selectively attach to those microdots upon leaving the solution.

They also found the "captured" fusion proteins could pull other select proteins from solution so those could be chemically identified. Finally, they confirmed that microdot array could then be wiped clean of all attached proteins simply by "reversing the phase transition," Chilkoti said in an interview.

In this case, the researchers added salt to the solution to induce the same kind of phase changes as does raising the water temperature.

"It’s a way of creating what I would call a cleanable surface for sensing," Chilkoti said. "We can create a surface for a sensor, do a binding reaction, detect a signal, then release everything. Then we could repeat the same process with the same fusion protein, or a different one."

But the dots used in that experiment were "microns" wide -- at the millionths of a meter scale. Chilkoti’s team wondered if the process would also work at the thousand-times-smaller "nanometer" scale (billionths of a meter) to capture a few hundred individual molecules.

So they collaborated with Stefan Zauscher, a Duke assistant professor of mechanical engineering and materials science whose group has an Atomic Force Microscope that can deposit nanoscale amounts of material through a process called "dip pen nanolithography" (DPN).

Instead of using a glass slide, that collaboration fabricated a gold surface on which to bind ELP nanodots because "DPN really works well on gold," Chilkoti said. Repeating the reversible phase change experiments to draw proteins from solution for detection, "we found it worked even better at the nanoscale," he added.

A major reason for their improved success is that the gold surface was specially modified to prevent stray proteins from attaching to the experimental array, he said. "There was nothing binding in the background, so we could get extraordinary reversibility. We would have a clean surface, and we could do it over and over."

The goal of keeping away stray proteins also motivated Chilkoti’s group to grow forests of special 15-nanometer-high polymer brushes with fuzzy branches that could act as raised platforms on which to locate ELP protein sensors or other molecular sized devices.

In a paper in the February 2004 issue of the journal Advanced Materials, Chilkoti and colleagues described building such a "non-fouling" platform by inducing methyl methacrylate molecules to grow into tall stalks from a gold surface through a self-assembly process known as "atom transfer radical polymerization."

In the same process, molecules of polyethylene glycol (PEG) were also induced to form fuzzy branches extending from those stalks, creating the overall look of bottle brushes.

In this case, the PEG branches formed a protective barrier that kept unwanted proteins from coming out of solution and sticking to the platform. "PEG is the gold standard for making a film or coating that is protein resistant," Chilkoti said. "But it has been difficult to get it to work on a range of materials."

In an attempt to use nature’s method to grow chain-like polymers, Chilkoti’s and Zauscher’s laboratories are now exploring a method to build nanotowers of DNA -- the master molecule that makes up genes -- block by block from the surface.

In a paper published online on Sept. 27, 2005, in the Journal of the American Chemical Society, the Duke researchers described how the enzyme terminal deoxynucleotidyl transferase (TdTase) could be used to induce short DNA strands to form extensive chains. Those "polymerizing" chains, growing vertically from nanodots of gold patterned onto silicon, assembled into tower-like structures http://www.pratt.duke.edu/news/releases/index.php?story=233.

The process worked in a solution of enzyme and DNA building blocks -- called nucleotides -- with the TdTase grabbing floating nucleotides and pulling those into the extending structure.

"We believe that TdTase-catalyzed surface-initiated polymerization of DNA will be a useful tool for the fabrication of complex biomolecular structures with nanoscale resolution," the researchers wrote.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Cohesin down-regulation drives hematopoietic stem cell aging
14.12.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Foxes in the city: citizen science helps researchers to study urban wildlife

14.12.2018 | Ecology, The Environment and Conservation

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>