Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweetgum tree could help lessen shortage of bird flu drug

30.03.2006
The sweetgum tree grows widely throughout the country and is known for its mace-like green fruit, which are sometimes called "gumballs." Now, this spiny fruit may become an important source of a chemical needed to make a lifesaving drug against bird flu — a drug that is currently in short supply worldwide, researchers say.

Chemists have found that the seeds of the sweetgum fruit contain significant amounts of shikimic acid, the starting material used to produce the main antiviral agent in a much-heralded drug for fighting bird flu. Their findings, which could help increase the global supply of the drug, were described today at the 231st national meeting of the American Chemical Society, the world’s largest scientific society.

Shikimic acid is used to make a generic drug called oseltamivir — best known commercially as Tamiflu® — which is used to fight many types of flu viruses. Some health experts believe that this and similar antiviral drugs could help save lives by slowing the spread of the virus in the absence of a bird flu vaccine, which is still in development.

The drug, which blocks the replication of the flu virus, is being stockpiled worldwide to slow or stop a possible bird flu pandemic that some experts predict could kill millions — if the virus mutates into a form that can spread from person to person. The virus, a strain known as H5N1, primarily afflicts birds at present but has been known to kill a small but growing number of humans who have had close contact with infected birds.

There is a skyrocketing demand for Tamiflu, but some experts fear there won’t be enough of the drug to treat everyone if a worldwide pandemic occurs. The supply problem resides in the drug’s source: The shikimic acid used to make it is obtained almost exclusively from the Chinese star anise, a fruit that is found mainly in China and whose supply has dwindled due to high demand for the flu drug. Although shikimic acid is found in many plants, star anise has been considered the most abundant plant source, until now.

"Our work gives the hearty sweetgum tree another purpose, one that may help to alleviate the worldwide shortage of shikimic acid," says study leader Thomas Poon, Ph.D., a professor of chemistry from the W.M. Keck Science Center at The Claremont Colleges in Claremont, Calif. "They have lots of potential for fighting bird flu."

The sweetgum tree grows widely throughout the United States and other parts of the world. In this country, it is particularly common in the South, including the Carolinas, Georgia and Alabama, but also can be found as far west as Missouri, Arkansas and Oklahoma and northward in parts of Illinois.

Although shikimic acid is found in the leaves and bark of the tree, it is most abundant in the fruit, Poon says. In the mature tree, the fruit emerges as a green seedpod that later dries into a brown, spiny husk, which releases an abundance of tiny, grain-like seeds. To optimize shikimic acid extraction, the gumballs need to be harvested when they are still green and before the seeds have been dispersed, Poon says. Each tree can hold hundreds, if not thousands, of seedpods.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>