Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare Chinese frogs communicate by means of ultrasonic sound

16.03.2006


Artist’s rendering of Amolops tormotus courtesy of Margaret Kowalczyk.


First came word that a rare frog (Amolops tormotus) in China sings like a bird, then that the species produces very high-pitch ultrasonic sounds. Now scientists say that these concave-eared torrent frogs also hear and respond to the sounds.

The findings, to appear in the March 16 issue of Nature, represent the first documented case of an amphibian being able to communicate like bats, whales and dolphins, said corresponding author Albert S. Feng, a professor of molecular and integrative physiology at the University of Illinois at Urbana-Champaign.

Feng, a researcher at the Beckman Institute for Advanced Science and Technology, was introduced to the frog species by Kraig Adler, a Cornell University biologist who had learned about it while conducting a survey of amphibians in China. Feng continues to study frogs and bats to understand how the brain processes sound patterns, especially in sound-cluttered environments in which filtering is required to allow for communication.



Feng and colleagues previously reported that males of the species make these high-pitched bird-like calls, with numerous variants in terms of harmonics and frequency sweeps. Some sounds exceeded their recording device’s maximum capability of 128 kilohertz. Human ears hear sound waves generally no higher than 20 kilohertz. The frogs studied inhabit Huangshan Hot Springs, a popular scenic mountainous area, alive with noisy waterfalls and wildlife west of Shanghai.

"Nature has a way of evolving mechanisms to facilitate communication in very adverse situations," Feng said. "One of the ways is to shift the frequencies beyond the spectrum of the background noise. Mammals such as bats, whales and dolphins do this, and use ultrasound for their sonar system and communication. Frogs were never taken into consideration for being able to do this."

Adler had drawn attention to the species because the frogs do not have external eardrums, raising the possibility of unusual hearing abilities. "Now we are getting a better understanding of why their ear drums are recessed," Feng said. "Thin eardrums are needed for detection of ultrasound. Recessed ears shorten the path between eardrums and the ear, enabling the transmission of ultrasound to the ears."

To test if the frogs actually communicated with their ultrasonic sounds, Feng and colleagues returned to China with their recording equipment and a special device that allowed playback of recorded frog calls in the audible or ultrasonic ranges. They observed eight male frogs under three experimental conditions (no sounds, playback of calls containing only audible parts and playback of just ultrasonic frog calls).

During playback, the researchers watched for evoked calling activity in which a male frog begins calling upon hearing calls from other frogs in the area. Six frogs responded to ultrasonic and audible sound ranges, with four responding with calls in both ranges. One frog called 18 times to ultrasonic calls, including four very telling rapid responses, Feng said. Another frog did not respond to ultrasonic stimulation but produced calls 18 times to an audible prompt.

Clearly, Feng said, some of the frogs indeed communicated ultrasonically. They have the ability to do so, but for some reason some frogs do and some don’t, he said. "We believe that all of them have the capacity to respond to the ultrasound."

Ultrasonic communication likely will be found in other amphibians and birds, Feng said, but, until now, no one has bothered to look into it.

"Humans have always been fascinated by how some animals can discern their world through a sensing system vastly different from our own," Feng said. "The electromagnetic sense in fishes and homing pigeons, polarized light vision in ants, chemical sensing of pheromones in insects and rodents, echolocation by ultrasound in bats and dolphins, are just a few examples.

"That frogs can communicate with ultrasound adds to that list and represents a novel finding, because we normally think such ability is limited to animals equipped with a sophisticated sonar system," he said. "This suggests that there are likely many other examples of unexpected forms of communication out there."

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>