Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Genetic network’ guards against lethal DNA damage

15.03.2006


Discovery in yeast opens door to new source of information on DNA damage, repair, and cancer



The discovery in yeast cells of a genetic network that guards against lethal DNA damage is a first step in the creation of a database of disease-causing combinations of mutated human genes, according to researchers at The Johns Hopkins University School of Medicine led by Jef. D. Boeke, Ph.D. In a report in the March 10 issue of Cell, the Hopkins team described a genetic network that is necessary for ensuring genomic stability in yeast. This study also identified previously unrecognized genes critical for maintaining DNA integrity and novel functions for well-known genes.

"A lot of human diseases are caused by multiple gene mutations that are difficult to identify," said Boeke, who is a professor of molecular biology and genetics and director of the High Throughput Biology Center at the Hopkins School of Medicine.


The yeast cell is an excellent model for this kind of study because 25 percent of human disease genes are also found in yeast, according to Boeke. Therefore, the discovery of this network of genes could help to identify mutations whose combined deleterious effects cause human diseases, including cancer and neurodegeneration, as well as aging.

"The interactions we discovered in yeast could also help researchers select the human versions of these genes suitable as targets for the development of new, more targeted and less toxic cancer therapies," Boeke said.

The goal of the Hopkins study was to identify pairs of genes that, while different, play redundant roles in governing genomic integrity in yeast cells, filling in for each other when one of the genes is mutated or deleted. Such redundancies ensure that each task in the network of biochemical reactions governing DNA stability is accomplished, Boeke noted.

Based on the data from this study, the investigators were able to separate the genes governing the stability of yeast DNA into 16 modules, or mini-pathways of genes, based on these genetic interactions, which are called synthetic fitness or lethality interactions. Synthetic lethality is a phenomenon in which two mutations that are not individually lethal cause cell death when combined. Specifically, the Hopkins team identified 4,956 interactions among 875 genes involved in DNA repair, DNA replication, the halting of replication and cell cycle progression by "checkpoints" so that damaged DNA can undergo repair, and responses to oxidative stress necessary for reducing the intracellular levels of highly reactive molecules that bind to and damage DNA.

The yeast has about 6,000 genes, of which about 1,000 are essential to survival and 5,000 are not, Boeke said. Specifically, 1,000 of the 5,000 non-essential genes are important enough so that the yeast grows slowly if any one of them is absent. And any of the 4,000 other genes can be deleted from the cell without interfering with the cell’s growth.

A major goal of the Hopkins team is to determine which of the non-essential genes interact with each other, said Boeke. All such pair-wise combinations of the 5,000 non-essential genes in the yeast genome would require about 25 million tests, he added. In the current study, 74 genes were tested in pair-wise combination with the 5,000 non-essential genes, a feat approximately equivalent to 370,000 gene-pair tests.

The Hopkins team used a technology known as dSLAM (heterozygote diploid-based synthetic lethality analyzed by microarray) to look at the effects of 5,000 different double mutations on cell fitness in a single experiment. With this technology, only 5,000 tests would be required to map the 25 million pair-wise combinations, greatly speeding the work.

The dSLAM strategy is somewhat like pulling out parts of a radio at random to see what happens, Boeke said.

"With yeast, as with a radio, you might rip out part A or part B and find that the radio still works; but if you pull out both parts and the radio dies you would learn that A and B can compensate for each other’s absence. The parts we’re pulling out of yeast are genes, and we look to see what happens when both of the genes are pulled out."

The dSLAM technology takes advantage of DNA barcode that identifies which genes a yeast cell is missing. This is much like using a commercial barcode in a store to quickly identify items at the checkout counter. The scanner in this case is a microarray: a grid of thousands of spots on a piece of glass that holds a unique "sensor" strand of DNA that matches one of the barcodes. Machines then read the microarray to identify which of the sensors found matching barcodes that identified specific yeast cells with specific mutations. If two genes that compensated for each other are knocked out, the yeast cell dies and the microarray doesn’t record that cell, Boeke noted. That means the two genes interact with each other, he said.

"This strategy for finding interacting genes will open the door to an extraordinarily rich source of new data on DNA damage, repair, and human diseases," Boeke added.

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>