Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-tech sieve sifts for hydrogen

07.02.2006


New polymer use may yield cheaper way to separate hydrogen from impurities

Whether it’s used in chemical laboratories or the fuel tanks of advanced automobiles, hydrogen is mostly produced from natural gas and other fossil fuels. However, to isolate the tiny hydrogen molecules, engineers must first remove impurities, and the currently available methods can require substantial equipment or toxic chemicals.

Now, in the Feb. 3 issue of the journal Science, engineers have announced the development of a simpler, safer material that can potentially assist, and in some places replace, existing processing methods. The rubbery, plastic film, similar to membranes already in use in biomedical devices, has applications for isolating not only hydrogen, but also natural gas itself.



"Our team originally set out to design membranes to purify hydrogen produced from coal," said co-author and National Science Foundation awardee Benny Freeman of The University of Texas. "We felt that a good improvement would be to design membranes more permeable to impurities than to hydrogen," he added. Until now, existing membranes had the opposite property--they were more permeable to hydrogen than to impurities.

Freeman collaborated in this research with colleagues at both The University of Texas at Austin and the Research Triangle Institute in Research Triangle Park, N.C.

Hydrogen is commonly generated from natural gas in a process called steam reforming, wherein treatments with hot steam convert methane into a gaseous mixture consisting of mainly carbon dioxide (CO2), carbon monoxide (CO) and hydrogen.

In a phenomenon that at first seems counterintuitive, larger gas molecules like CO2, and polar molecules, pass through the new film, while the much smaller hydrogen molecules stay behind.

The membrane works because the molecules in its structure have relatively "positive" parts that attract electrons and relatively "negative" parts that repel electrons. CO2 has some of these "polar" characteristics, so it is attracted to the membrane, dissolving into it as salt dissolves into a glass of water.

The molecules diffuse through the membrane at a rate that increases as more polar molecules become entrenched in the rubbery polymer, the researchers found. Even when the membrane is saturated with impurities, the polar properties continue to funnel the undesirable molecules along at a faster rate than for hydrogen, retaining most hydrogen molecules on the upstream side.

Unlike other methods, the new "reverse-selective" process can capture hydrogen at a pressure close to that of the incoming gas. This is a primary advantage for the membrane because high pressure is important for transport of the gas, and many applications, yet adds significant costs.

"The best you can do in terms of pressurization for any of these processes is make hydrogen at or near feed pressure," said Freeman. Conventional membranes, which would allow hydrogen to pass through while holding other gasses back, would decrease hydrogen pressure, he added.

While other hydrogen extraction methods still have advantages, the researchers believe there is great potential for future approaches to be hybrid processes that incorporate the new membrane within established systems.

Joshua Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>