Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Pregnant’ protein-coding genes carry RNA ’babies’

10.01.2006


Scientists characterize large numbers of independently expressed, non-protein-coding RNA genes in the introns of protein-coding genes



Scientists from the Chinese Academy of Sciences have performed a comprehensive analysis of small, non-protein-coding RNAs in the model nematode, C. elegans. They characterize 100 heretofore-undescribed transcripts, including two novel classes; they provide insights into the genomic structure and transcriptional regulation of non-coding RNAs; and they underscore the importance of non-coding RNAs in nematode development. Their work appears this month in the journal Genome Research.

"The significance of non-protein-coding RNAs as central components of various cellular processes has risen sharply over the recent years," explains Prof. Runsheng Chen, principal investigator on the study. Excluding microRNAs (miRNAs), or small transcripts that have recently received widespread attention and are known to play important roles in transcriptional regulation, small non-coding RNAs (or ncRNAs) in C. elegans have not been extensively investigated – until now.


Using a new, high-throughput procedure to clone small, full-length ncRNAs, Chen’s laboratory isolated and characterized 161 unique transcripts. A major advantage of the new cloning procedure is that it achieves an extraordinarily high detection rate for ncRNAs by current standards. "Studies published over recent years have only been able to reach a detection rate of about 3%, but our method reached a detection rate of 30% – a 10-fold increase in cloning efficiency," explains Chen. "It’s like going from a Model T Ford to a Ferrari in one fell swoop!"

Of the 161 transcripts detected by Chen’s group, 100 were novel and 61 were previously known or predicted. Among the 100 novel genes, 30 had no known function, whereas 70 belonged to the ubiquitous class of small nucleolar RNAs (snoRNAs). Based on sequence and structural features, Chen and his colleagues were able to classify more than half of the 30 unknown RNAs into two new categories: stem-bulge RNAs (sbRNAs) and small nuclear-like RNAs (snlRNAs). Both classes of transcripts exhibited enhanced expression during the later stages of worm development, indicating a functional role for these transcripts in developmental processes.

"The interesting thing about nematodes is that their genomic organization of both snoRNAs and other ncRNAs is quite different from other animals," says Chen. In contrast to the genomes of other metazoans, where most snoRNAs are found in introns and are under the control of independent promoters, nematode snoRNA loci are both intergenic and intronic (with and without promoters). Interestingly, plant snoRNAs are primarily located in intergenic regions. Other ncRNA genes (i.e., non-snoRNA genes) are mainly located in intergenic regions in both plants and animals. But in nematodes, Chen’s team found that many of these other ncRNA genes are located in the introns of host protein-coding genes and are under the control of independent promoter elements.

Finally, Chen and his colleagues estimated that 2700 ncRNA genes are present in the C. elegans genome. "One particularly intriguing aspect of the non-coding transcriptome is its potential to fill the regulatory gap created by the surprisingly low number of protein-coding genes in higher organisms," says Chen. "Between one-celled yeast, thousand-celled nematodes, and trillion-celled mammals, there is a difference of a mere 6,000 to 19,000 to 25,000 in protein-coding gene numbers. We think that regulation by non-coding RNA accounts for this discrepancy and helps to explain the additional biological complexity of higher organisms."

Maria Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>