Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coal Liquefaction

09.01.2006


Hydration in the presence of borane or iodine catalysts smoothes the way for the liquefaction of semianthracite coal



The tightening of worldwide oil reserves is causing the price of oil to escalate — and makes coal, which is much more abundantly available, an interesting starting material for liquid fuels and chemical raw materials. Researchers at the Max Planck Institute for Coal Research in Mülheim on the Ruhr have developed a new process that makes it possible to liquefy high-grade bituminous coal (semianthracite coal) for the first time. This type of coal has previously been used exclusively in combustion and gasification processes.

“Methods of coal liquefaction have been available since the beginning of the last century, but the cost has caused us to search for more effective new processes,” explains Matthias W. Haenel. Coal is a complicated, difficult to analyze mixture of organic components. In what is called the Bergius process for direct coal liquefaction, the coal is treated with hydrogen under pressure (>30 MPa) at 450 °C in the presence of a solvent and an iron oxide catalyst. The activity of this catalyst is low, however, because the solid iron oxide cannot enter the macromolecular network structure of the insoluble coal. Semianthracite coal, which only contains a small amount of volatile components, cannot be converted by this process at all. Haenel and his team hoped that a soluble catalyst would serve them better. They thought the family of borane catalysts, boron–hydrogen compounds known to transfer hydrogen atoms to organic molecules, seemed especially promising. Their studies of a German Magerkohle (low-volatile bituminous coal) showed that a mixture of sodium borohydride and iodine, which formed an iodine–borane catalyst in the reaction mixture, is particularly effective. Surprisingly, under the drastic reaction conditions used (25 MPa hydrogen pressure, 350 °C), iodine alone is catalytically active, though boron triiodide is best.


The solubility of the coal in pyridine is drastically increased by this treatment. One reason for this is that carbon–carbon bonds between aromatic and nonaromatic (aliphatic) parts of the molecules are broken and the free “bonding arms” are saturated with hydrogen (hydrated); the network structure of the coal is disrupted. In addition, the double bonds of the aromatic ring systems are partially hydrated so that the aliphatic content rises at the cost of the aromatic. The new process is the first “true” coal hydration in the sense of hydrogen being added to unsaturated structures. Once prepared in this way, high-rank coals could now be liquefied in a subsequent conventional hydrocracking process for the first time.

Author: Matthias W. Haenel, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr (Germany), http://www.mpi-muelheim.mpg.de/kofo/institut/arbeitsbereiche/haenel/haenel_d.html

Title: The First Liquefaction of High-Grade Bituminous Coals by Preceding Hydrogenation with Homogeneous Borane or Iodine Catalysts

Angewandte Chemie International Edition, doi: 10.1002/anie.200502614

| Angewandte Chemie
Further information:
http://www.mpi-muelheim.mpg.de/kofo/institut/arbeitsbereiche/haenel/haenel_d.html
http://www.angewandte.de

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>