Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sangamo BioSciences demonstrates its ZFP treatment protects cells from HIV infection

19.12.2005


Sangamo BioSciences, Inc. (Nasdaq: SGMO) today announced that data from its program to develop a ZFP Therapeutic(TM) for HIV/AIDS were presented at the 45th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) in Washington, DC. The study represents the first demonstration that cells can be made resistant to HIV infection by treatment with Sangamo’s proprietary zinc finger DNA-binding protein nucleases (ZFNTM) designed to specifically disrupt the CCR5 gene.



In its anti-HIV preclinical research program, Sangamo has designed ZFNs that can be used to disrupt the CCR5 gene, a receptor required for HIV entry into immune cells. The researchers found that ZFN-modified cells were resistant to HIV infection whereas control cells were infected when challenged with the virus. Furthermore, when CCR5 expression was experimentally restored in the ZFN-modified cells, HIV was once again able to infect these cells. Sangamo has shown disruption of the CCR5 gene in a number of different cell types including T-cells, the target cell for this therapeutic approach.

"CCR5 is an important target in the fight against HIV/AIDS," stated Edward Lanphier, Sangamo’s president and CEO. "Individuals with a natural mutation of their CCR5 gene have been shown to be resistant to HIV infection. Several major pharmaceutical companies have initiated programs to develop small molecule drugs to block HIV binding to CCR5, but in recent months two trials have been halted, one due to reports of liver toxicity of the candidate drug. We believe that using ZFNs to permanently modify the CCR5 gene specifically in T-cells and thus directly block the expression of the protein on the surface of these cells may have several advantages over the systemic effects of other drugs in development."


Small molecule or antibody approaches require the constant presence of antagonist in high enough concentrations to block therapeutically relevant numbers of the CCR5 protein, of which there are approximately 10,000 copies on the surface of each T-cell. In contrast, brief exposure of T-cells to Sangamo’s ZFNs has been shown to result in permanent modification of the CCR5 gene and consequent alteration of the CCR5 protein.

"We believe that the data presented at ICAAC provide another important validation of our novel approach to HIV," said Dale Ando, M.D., Sangamo’s vice president of therapeutic development and chief medical officer. "By administering ZFNs to patients, we could potentially provide HIV-infected individuals with a reservoir of healthy and uninfectable T-cells that would be available to fight both opportunistic infections and HIV itself. In this program, we have been working in close collaboration with Dr. Carl June at the University of Pennsylvania with the goal of initiating a Phase 1 clinical trial to test our ZFP Therapeutic in 2006."

Dr. Carl June, Director of Translational Research at the Abramson Family Cancer Research Institute at the University of Pennsylvania School of Medicine, is a leader in the field of research testing T-cell therapies for cancer and HIV infection. Dr. June stated, "After the recent negative news regarding trials with pharmacologic blockade of CCR5, it is very important that we focus on positive results involving this well-validated disease target. I am encouraged by Sangamo’s findings and look forward to collaborating with the Company further to bring this promising approach into the clinic."

Justin Jackson | EurekAlert!
Further information:
http://www.burnsmc.com
http://www.sangamo.com
http://Worldaidsday.org

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

Molecular switch detects metals in the environment

15.08.2018 | Materials Sciences

Seeing on the Quick: New Insights into Active Vision in the Brain

15.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>