Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A crucial role for TGFbeta signaling in congenital eye disorders

14.12.2005


The lens in the developing eye acts as a TGFbeta signaling center that controls differentiation, survival and formation of multiple eye structures deriving from the neural crest. A study published today in the open access journal Journal of Biology shows that neural crest (NC) derived cells contribute to both anterior and posterior parts of the developing mammalian eye. NC cells migrate properly in the eye but fail to differentiate in the absence of TGFbeta signaling. The activity of TGFbeta is mediated by the two transcription factors Foxc1 and Pitx2 that have been implicated in human eye disorders. These findings shed light on the origin of congenital eye disorders that can give rise to glaucoma and blindness: Axenfeld-Rieger’s anomaly and persistent hyperplastic primary vitreous.



Lukas Sommer, from the Institute of Cell Biology at the ETH in Zurich, Switzerland, heading an international team including Lars Ittner, used in vivo cell fate mapping in mice. They show that NC-derived cells can be found in the eye vesicle of mouse embryos, soon after it is formed. NC-derived cells subsequently contribute to various structures of the developing eye, and Ittner et al. show for the first time an NC contribution to the primary vitreous.

TGFbeta receptor type 2, Tgfbr2, was inactivated to study the importance of the signaling pathway in NC-derived cells. In these mice, the eyes were reduced in size and the lens and cornea failed to separate. The authors show that TGFbeta signaling is crucial for proper differentiation and morphogenesis of NC-derived cells in eye structures. Conceivably, TGFbeta might be able to support differentiation not only during eye development but also at later stages. If so, this might open up new strategies for promoting regeneration of eye structures, for example in patients suffering from loss of corneal transparency.

Grace Baynes | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>