Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A commonly prescribed drug reverses learning and attention deficits in a mouse model of the genetic disorder Neurofibromatosis

08.11.2005


This week, researchers report evidence that a statin drug already shown to be safe for use in humans has proven effective at correcting cell-cell communication and curing learning disfunction in a mouse model of Neurofibromatosis type I, a human genetic disorder that causes learning disabilities in millions of people worldwide.

Learning disabilities affect 5% of the world’s population, have a profound impact on countless lives, and cost billions of dollars, but there is little or nothing that we are currently able do to prevent or treat this enormous problem. At the heart of this challenge is our lack of understanding of the mechanisms underlying this complex class of brain problems. In an effort to understand these disorders and develop treatments, Dr. Alcino Silva and colleagues at UCLA have focused research on the study of the most common genetic cause for learning disabilities: Neurofibromatosis type I (NF1). The idea behind the NF1 research is that if we understand this particular learning disability, which is caused by a single defective gene, and manage to develop effective and sustainable treatments, we may be able to use the information learned to tackle this general class of learning and memory problems.

Because of the difficulties and limitations of studying mechanisms of memory in human patients, the researchers decided to study NF1 in mice. The scientists had previously shown that mice with the mutations that cause NF1 in human patients possess many of the features of this complex disorder, including deficits in spatial learning, attention, and motor coordination. Studies of these mutant mice showed that the learning deficits are caused by the overactivity of a molecule called Ras, causing an imbalance between signals that activate brain cells and those that inhibit them, and leading to deficits in cell-cell communication needed for learning.



The work reported by Silva and colleagues this week in Current Biology demonstrates that a commonly prescribed statin drug, Lovastatin, can reverse the overactivity of Ras, decrease inhibition, repair the cell-cell communication deficits, and cure the learning disabilities of the adult Nf1 mutant mice. These findings are tremendously exciting because they suggest that the disabling learning deficits associated with NF1, a disorder that affects one in three thousand people world-wide, could be cured with a class of relatively safe drugs (statins) that millions of people have taken for extended periods of time in the last 20 years. Importantly, the findings also demonstrate that contrary to popular belief, the cognitive deficits associated with this disorder are not irreversible developmental deficits, since a limited treatment in adult mice can effectively reverse this condition. Because the mechanisms of NF1 function are similar in mice and men, these findings suggest that statins will be an effective strategy to treat NF1 in humans.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>