Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use ’trickery’ to create immune response against melanoma

02.11.2005


Dendritic cell-based therapy uses tumor cells and ’danger’ signals to stimulate tumor immunity



A new type of immunotherapy in which dendritic cells are tricked into action against cancer when they are exposed to harmless pieces of viruses and bacteria is described in the November issue of Cancer Research. Dendritic cells, the pacemakers of the immune system, are known to play a vital role in the initiation of the immune response but are often eluded by cancer.

In the study, University of Pittsburgh researchers describe the creation of an animal model of an immunotherapy approach that, first used in cancer patients, uses a patient’s own tumor cells to stimulate anti-tumor immunity. The discovery of the animal model will enable researchers to more fully understand and develop the approach.


"Cancer cells are very adept at camouflaging themselves and hiding from the immune system and this makes most cancers, including melanomas and lymphomas of the skin, extremely challenging to treat with existing immunotherapies," said Louis D. Falo, M.D., Ph.D., professor and chairman of the department of dermatology at the University of Pittsburgh School of Medicine. "While we know that dendritic cells are necessary to activate a response against cancer as the first cells to present antigens to other cells of the immune system, they are often ineffective because they fail to recognize growing cancers as dangerous. What we describe is an immunotherapy approach that activates dendritic cells by using an external stimulus that mimics danger. This alerts the cells to activate a type of immune response that is particularly important for fighting cancer."

In the study, melanoma cells and dendritic cells from mice were removed, combined together in a culture dish and exposed to pieces of viruses and bacteria. The researchers used the most aggressive mouse melanoma tumor, B16, which has multiple mechanisms to escape the immune system that are similar to those used by human cancers. They found that the dendritic cells were able to extract antigens directly from tumor cells. By exposing the antigen-bearing dendritic cells to harmless pieces of bacteria and virsuses that they preceived as dangerous, the researchers "tricked" them into recognizing the tumor as dangerous as well. The alerted cells were then injected back into the mice where they successfully activated a particular T-cell response important for fighting tumors. That response, called Th1, led to a significant reduction in tumor growth in the mice.

"Typically, tumors are able to grow in part by convincing the immune system that they are normal. Our goal was to mimic danger to wake up the dendritic cells and program them to stimulate the right type of immune response against the patients’ own tumor cells," said Dr. Falo.

The researchers further discovered that the Th1 response was enough to stop tumor growth on its own, indicating the importance of Th1-type immunity for tumor therapy. Prior to their discovery, researchers believed that a Th1 response was important, but that it worked primarily by activating another type of T-cell called a cytotoxic T-cell (CTL). These results suggest that it may be important to monitor Th1-type immunity in addition to CTL immunity when evaluating patients’ responses to immunotherapy.

Interestingly, Dr. Falo has already found this approach to be successful in a preliminary study in cancer patients. But further progress has been hindered by the length of time and expense involved in such a clinical trial. Unlike most therapy advances that are developed in animal models and then translated to patients, the "danger" signals used in this approach were developed using models based on human tissue. He believes that the creation of this animal model will enable further development of immune approaches to melanoma and other cancers, bringing new treatment options to patients who have failed available therapies.

Melanoma is the most serious form of skin cancer. Although it accounts for only 4 percent of all skin cancer cases, it causes most skin cancer-related deaths. Lymphomas of the skin, including cutaneous T-cell lymphomas, are diagnosed in approximately 16,000 to 20,000 people in the United States each year and are often difficult to diagnose in early stages.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>