Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bees solve complex colour puzzles

01.11.2005


Bees have a much more sophisticated visual system than previously thought, according to a new UCL (University College London) study in which bees were able to solve complicated colour puzzles. The findings shed light on how brains resolve one of the most difficult challenges of vision – namely, recognizing different surfaces under different colours of illumination – by suggesting that bees solve this problem using their experience with meaningful colour relationships between objects in a scene. The findings, published in the Proceedings of the National Academy of Sciences, may one day lead to the design of autonomous robotic systems.



In the UCL study, scientists from the UCL Institute of Ophthalmology trained bumblebees to find artificial flowers of a particular colour using a nectar reward. They then tested the bees’ ability to find the same flowers in scenes that were simultaneously illuminated by four differently coloured lights – UV-yellow, blue, yellow and green. To solve this puzzle, the bees had to effectively segment the scene into its different regions of illumination, and then find the correct flowers within each region.

Dr Beau Lotto of the UCL Institute of Ophthalmology says: “Although we knew that bees were able to recognise flowers under different global lights, we didn’t know whether they could also do this under more complicated conditions, ones that are in fact more typical in nature, such as dappled light across a woodland floor.


“When all the surfaces in a scene are under the same light, identifying a particular surface when the global illumination changes is in principle an easy problem to solve, since all vision needs to do is adapt itself to the scene’s average colour, a bit like adapting to the darkness of a cinema. Far more difficult is to recognise the surface or object under multiple lights simultaneously, since adapting to the scene’s average colour – which was previously thought to be the strategy used by bees – won’t work.”

“Our study shows that the tiny brain of the bee can not only solve this difficult task, which the most sophisticated computers still can’t resolve, but suggests they do so by using the colour relationships between objects in a scene that were statistically most useful in their past experience. Because this same strategy is also used by humans, our work on bees, in conjunction with our work on humans, may enable us to understand the general principles by which any visual system (natural or artificial) can construct useful behaviour from ambiguous sensory information.

‘One long-term aim of our research is to exploit this understanding to build seeing robots that, like the bee with its mere one million neurons, can learn to find a simple flower in a meadow, which no machine can do at present. Our lab has reconstructed our specially designed bee flight arena – known as the Bee Matrix – in the virtual world, where virtual autonomous bees are ‘evolving’ under exactly the same conditions as those experienced by our real bees.”

Judith Moore | alfa
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>