Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel treatment target for deadly brain tumors identified

31.10.2005


Researchers at Wake Forest University Baptist Medical Center have identified a second promising treatment target for glioblastoma multiforme, one of the most deadly types of brain tumors. The research results are reported in the October issue of Molecular Cancer Research.

"We’ve found that a particular protein may play a major role in the progression of these tumors, suggesting an attractive new treatment approach," said Waldemar Debinski, M.D., Ph.D., director of the Brain Tumor Center of Excellence at Wake Forest University Baptist Medical Center.

This was the first study to investigate the presence and significance of a protein called EphA2 in brain cancer cells. This protein, which is found in cell membranes, allows normal cells to communicate with their environment and each other. In its normal active state, the protein seems to inhibit abnormal cell growth and division.



Debinski and colleagues demonstrated that glioblastoma cells have significantly increased levels of the protein EphA2 compared to normal cells – but it is in an inactive form. They believe that this inactive form of EphA2 aids in the survival and spread of cancer cells.

To test their hypothesis, they treated glioblastoma cells with ephrinA1, a naturally occurring molecule that binds to EphA2 and activates it. They had already demonstrated that ephrinA1 is present at much lower levels in cells and tumors with increased levels of inactive EphA2.

"We observed that cells treated with ephrinA1 slowed down their growth and were less likely to exhibit invasive properties," said Debinski.

The researchers believe that developing medication to change levels of EphA2 and ephrinA1 offers new promise for successfully treating glioblastoma multiforme, which is the most common form of brain tumor and the least curable of all human cancers. The majority of the 17,500 brain tumors diagnosed each year in the United States are glioblastomas. Patients have a median survival time of nine to 12 months and a five-year survival rate of 1 to 5 percent.

"EphA2 represents a novel target for the development of molecular therapeutics for the imaging and treatment of patients with glioblastoma," said Debinski. "New therapies are clearly needed because, despite the standard treatment of surgically removing the tumor and treating the patient with chemotherapy and radiation, survival has increased only slightly over the past 30 years."

Debinski has already developed one treatment for glioblastoma, based on his discovery that the tumor’s cells have a particular type of receptor for interleukin 13 (IL 13), a naturally occurring protein that regulates the immune system in the body. Normal cells do not have these same receptors. Debinski developed a drug that combines a form of IL-13 with a toxin that kills cancer cells. By targeting the therapy to these receptors, the drug finds and kills the cancer cells. The first generation of the drug is being tested in advanced clinical trials worldwide.

Both of Debinki’s projects focus on the identification of "molecular markers," or molecules that are found in high levels on tumor cells but are nearly absent on normal cells. This makes them attractive for such treatment approaches as targeted drug delivery.

EphA2 may also show promise for treating other types of cancer. It has been shown to be present at high levels in several other tumors, such as pancreas, colon and breast. And recently other researchers have shown that EphA2 is a potential target for a glioblastoma vaccine that could potentially prevent recurrences of the tumors.

Debinski’s results were preliminarily reported at the World Federation of NeuroOncology meeting and the European Association for Neuro-Oncology meeting, both in Edinburgh, Scotland, in May. Jill Wykosky, B.S., and Denise Gibo, B.S., from Debinski’s laboratory, conducted this work, and Constance Stanton, M.D., from the Department of Pathology, collaborated.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>