Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Researchers Redesign Life for Mars and Beyond

26.10.2005


Researchers at North Carolina State University are looking deep under water for clues on how to redesign plants for life deep in outer space.

Some of the stresses inherent with travel and life in space – extreme temperatures, drought, radiation and gravity, for example – are not easily remedied with traditional plant defenses.

So Dr. Wendy Boss, William Neal Reynolds Distinguished Professor of Botany, and Dr. Amy Grunden, assistant professor of microbiology, have combined their expertise to transfer beneficial characteristics from a sea-dwelling, single-celled organism called Pyrococcus furiosus into model plants like tobacco and Arabidopsis, or mustard weed.

P. furiosus is one of Earth’s earliest life forms, a microbe that can survive in extreme temperatures. It grows and dwells in underwater sea volcanoes where temperatures reach more than 100 degrees Celsius, or that of boiling water. Occasionally, the organism is spewed out into near freezing deep-sea water.

The NC State research, funded for two years and $400,000 by the NASA Institute for Advanced Concepts, entails extracting a gene – called superoxide reductase – from P. furiosus and expressing it in plants. That gene, one of nature’s best antioxidants, reduces superoxide, which in plants is a chemical signal given off when stressful conditions are encountered. This signal essentially puts the plant on alert, but staying on alert too long can be harmful: If not reduced quickly, the toxic superoxide will kill plant cells.

Since the superoxide reductase gene is not found in plants, Boss, an expert in plant metabolism and plant responses to stimuli, and Grunden, an expert in organisms that grow in extreme environments, wanted to use this genetic manipulation as a test run to gauge the feasibility of inserting a gene from an extremophile – an organism that survives, and thrives, in extreme environments – into a plant, and then seeing whether the gene would function the way it does in its original organism.

“The bottom line is that we were able to produce the P. furiosus superoxide reductase gene in a model plant cell line and to show that the enzyme has the same function and properties of the native P. furiosus enzyme,” Boss said. “The fact that the plant cells would produce a protein with all the properties of the P. furiosus protein opens new avenues for research in designing plants to survive and thrive in extreme conditions.”

But people living on the Arctic Circle shouldn’t be rushing out to buy palm trees just yet. It’ll take years and much more study before plants will be able to survive outside of their usual habitats. Moreover, there could be deleterious side effects to this type of genetic manipulation. What’s important, the researchers say, is the fact that P. furiosus and other extremophiles might be able to lend their beneficial traits to plants sometime in the future.

“This is very fundamental research,” Boss said. “If we could add new genes to plants, we could potentially make the plants more resistant to extreme conditions such as drought and extreme temperatures that we have on Earth, but also to the extreme conditions that one might find on Mars.”

Now that the concept of inserting a single gene from an extremophile into a plant has been proven, the researchers are working to insert associated genes in hopes of providing even more extreme-temperature protection to plants. And, they’re involving more great minds to come up with more answers – they’ve team-taught an honors undergraduate class called “Redesigning Living Organisms to Survive on Mars: Development of Virtual Plants” and plan to offer another class to investigate new mechanisms for reducing radiation damage in spring 2007.

Mick Kulikowski | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>