Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal the mechanism by which alcohol consumption enhances social memory in mice

20.10.2005


Alcohol, like any other substance that reinforces behaviour, such as another drug of abuse or even food, has a certain capacity to enhance social memory, that is, the ability to remember other individuals. If a mouse is administered alcohol immediately after being introduced to another animal of its own kind, the former will recognise the latter sooner. This phenomenon, which has significant implications when it comes to understanding the process underlying alcohol addiction, does not have a definitive explanation. However, a team of researchers from the Psychobiology Department at the University Jaume I (Spain) has revealed a part of the mystery, since they have proved that the substance responsible for enhancing social memory is not ethanol, but another compound derived from alcohol metabolism in the brain, namely, acetaldehyde.



The UJI team, headed by Psychobiology Professor Carlos González Aragón, has been working for years conducting experiments to prove that alcohol is metabolised not only in the liver but also in certain areas of the brain where important amounts of ethanol are processed through the action of an enzyme known as catalase. The substance derived from these reactions, acetaldehyde, is involved in many of the changes of behaviour typically associated to alcohol. Catalase metabolises alcohol in the brain and gives rise to a certain amount of acetaldehyde that, according to the researchers, would be responsible for the effects attributed to ethanol. If substances that enhance the action of catalase are administered, a higher production of acetaldehyde and a boost in its effects are observed, while acetaldehyde and most of the effects of ethanol are not produced when catalase inhibitors are used after having consumed a certain amount of alcohol.

Up to now, however, researchers had proved that brain catalase was involved in the stimulating effect of ethanol, but its role in complex cognitive processes such as learning and memory had not been dealt with. The work that we are now bringing to light, and which is the main point in the thesis of researcher Héctor Marín, proves this involvement. By administering catalase enhancers and inhibitors to mice, Marín has shown how the enzyme intervenes in the reinforcement of social memory.


“This is the first study that demonstrates that the manipulation of brain catalase activity and, therefore, the presumable production of acetaldehyde in the brain, modifies the effects of ethanol on memory. In other words, the facilitating effect that ethanol has on social memory needs to previously metabolise it into acetaldehyde with the mediation of the catalase enzyme in the brain”, explains Héctor Marín.

In a first stage of the experiment, the researchers proved the enhancing effect exerted by alcohol on social memory by administering a certain dose of ethanol to an adult mouse after a first contact with a younger one. “We saw how ethanol injected into the mouse immediately after being introduced to the young mouse was able to double the capacity of the adult mouse to recognise the younger one, that is, to remember this previously introduced rodent-stimulus”, Marín points out.

In a second stage, the researchers at the UJI repeated the experiment, but they administered some catalase inhibitors to the adult mouse, and enzyme activity was thus severely limited. The results showed that, even though the rodent’s brain was receiving the same amount of alcohol as in the previous experiment, the ability of the adult mouse to remember the younger one was the same as that of a mouse that had not been injected with alcohol. “This suggests that our pre-treatments with catalase inhibitors do not modify the concentration of alcohol that reaches the brain from the bloodstream; rather, what they do is modify the ability of catalase to transform this ethanol into acetaldehyde directly in the brain,” adds Héctor Marín.

For the researchers, the results of the study have significant implications in the knowledge of how the mechanism explaining alcohol addiction works. In actual fact, every reinforcing substance has some memory enhancing effects and the way in which a particular drug affects the memory processes may be fundamental in order to understand its addictive power, claim the UJI researchers. In this case, some authors are beginning to replace the concept of alcoholism with that of acetaldehydism, for the very reason that acetaldehyde could play a key role in the development of addiction to alcohol. “If this is true, blocking the production of acetaldehyde directly in the brain could protect against or prevent alcoholism”, concludes Marín.

Hugo Cerdà | alfa
Further information:
http://www.uji.es

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>