Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adult stem cells aid recovery in animal model of cerebral palsy

30.09.2005


Adult stem cell therapy quickly and significantly improves recovery of motor function in an animal model for the ischemic brain injury that occurs in about 10 percent of babies with cerebral palsy, researchers report.



Within two weeks, treated animals were about 20 percent less likely to favor the unaffected side of their bodies and experienced about a 25 percent improvement in balance, compared to untreated controls, Medical College of Georgia researchers say.

Their findings are being presented during the 34th annual meeting of the Child Neurology Society Sept. 28-Oct. 1 in Los Angeles.


“We found that when these cells, provided by Athersys, Inc., were injected directly into the brain, it significantly improves the outcome in the animals,” says Dr. James E. Carroll, chief of the MCG Section of Pediatric Neurology and the study’s principal investigator.

Athersys, Inc., a Cleveland-based biopharmaceutical company pursuing cell therapy programs in cardiovascular disease, stroke, cancer and other diseases, funded the research in which about 200,000 cells were injected directly into the brain injury site.

The adult stem cells, called multipotent progenitor cells because of their ability to make different types of tissue, were taken from the bone marrow of rats and expanded by Athersys for dosing in the injury model, Dr. Carroll says.

Seven days after injury, stem cells were injected directly into the brains of 22 animal models through a tiny hole in the skull. As with human transplant recipients, the animals were placed on immunosuppressive therapy to avoid rejection, although Athersys’ experience in multiple animal models for human disease has shown donor-recipient matches and immunosuppression are not required.

Behavioral tests seven days after transplant showed a trend toward recovery and significant recovery by day 14. About 1 percent to 2 percent of the transplanted cells actually survived, apparently replacing some cells destroyed by the original injury, while others helped injured cells recover.

“Recovery might be even more important in baby brains than forming new cells,” Dr. Cesario V. Borlongan, neuroscientist at MCG and the Veterans Affairs Medical Center in Augusta, says of newborn brains that recover more readily than adult brains. Dr. Borlongan, a co-author on the abstract, is exploring stem cell therapy’s potential for aiding stroke recovery, including the use of clinical-grade human adult cells provided by Athersys in a stroke animal model. About 80 percent of strokes are caused by clots that cause ischemic brain injury similar to that of cerebral palsy.

The MCG researchers have evidence that the healing benefit of stem cells comes from nourishing factors they secrete. The cells seem attracted by chemokines, growth factors that rally to an injury site, Dr. Carroll says. Next steps include looking at longer-term recovery and at whether surviving stem cells actually function as brain cells, networking with other cells by forming points of communication called synapses.

Perhaps most importantly, they also will look at whether stem cells produce similar results when they are given intravenously rather than injected directly into the injury site, Dr. Carroll says. “If the ideal way of doing it scientifically doesn’t work, why move on from here?” he says. “Now that we know it does work, we are going to look at different methods of injection to try and find the one that is the easiest. We think the chemokines, at least in part, attract the cells, so we hope it will work even when given through the bloodstream.”

He notes that the therapy likely will need to be done soon after injury. Whether this therapy could help the some 500,000 people in the United States living with cerebral palsy still must be explored, he says.

He and Dr. Borlongan note much work needs doing before their findings might move to clinical trials. But they are optimistic that the availability of clinical-grade cells would expedite such a move.

“We hope this will eventually be something that can be used in the neonatal intensive care unit in babies with severe asphyxial brain injuries,” Dr. Carroll says of cerebral palsy patients. He and other pediatric neurologists and neonatologists already have begun to discuss such possibilities.

“These results suggest another promising avenue for stem cell therapy, this time to help newborn babies recover from a potentially devastating injury of birth for which there currently is no treatment,” says Dr. Gil Van Bokkelen, chairman and chief executive officer of Athersys.

Ischemic brain injury accounts for about 10 percent of cerebral palsy, broadly defined as brain injury that occurs before or during birth, and about 80 percent of strokes. For every 1,000 babies born, one or two have cerebral palsy, with consequences ranging from undetectable to major physical and mental impairment. Currently there is no treatment to repair or reduce the damage of cerebral palsy; tPA was approved in 1996 by the U.S. Food and Drug Administration as the first stroke treatment to reduce the damage of ischemic injuries.

Co-authors on the study include Dr. David Hess, chair of the MCG Department of Neurology; Dr. Lin Xu, research scientist; Drs. Noriyuki Matsaukawa, Guolong Yu, Takao Yasuhara and Koichi Hara, postdoctoral fellows; and Athersys scientists Robert Mays, Jim Kovach and Robert Deans.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Shedding light on the brown color of algae
14.07.2020 | Johannes Gutenberg-Universität Mainz

nachricht New substance library to accelerate the search for active compounds
14.07.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Shedding light on the brown color of algae

14.07.2020 | Life Sciences

Color barcode becomes ISO standard

14.07.2020 | Information Technology

New substance library to accelerate the search for active compounds

14.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>