Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defective lymphatic vessels identified as a novel cause of adult-onset obesity

20.09.2005


Laboratory model missing one copy of Prox1 gene exhibits abnormal increase in fat accumulation around sites of lymph leakage from defective lymphatic vessels, according to St. Jude



Leaky lymphatic vessels are the leading cause of the adult onset obesity observed in a laboratory model developed by investigators at St. Jude Children’s Research Hospital. The findings suggest that the abnormal leakage of lymph fluid from the ruptured lymphatic vessels stimulates the accumulation of fat, particularly in regions of the body rich in lymphatics, the researchers said. The lymphatic vasculature (system of capillaries and vessels) that drains lymph is essential for the immune response in inflammation, and is the main route for the spreading of metastatic tumors to the lymph nodes.

The St. Jude investigators showed that removal of one of the two copies of the gene Prox1 disrupts normal development of the lymphatic vasculature, leading to leakage of lymph from ruptured lymphatic vessels, and subsequent obesity. Specifically, the researchers found that adipocytes (fat cells) near leaking lymphatic vessels under the skin and in the abdomen were significantly larger than normal, and therefore able to store more lipids (e.g., fatty acids and triglycerides, used as an energy source).


"This is the first such evidence in an in vivo model showing that defects in the integrity of the lymphatic vasculature could lead to adult obesity," said Guillermo Oliver, Ph.D., an associate member of the Genetics and Tumor Cell Biology Department at St. Jude. "And therefore, this is the first model available for studying obesity linked to faulty lymphatic vessels. It will be an important tool for studying this novel form of adult-onset obesity, as well as diseases of lymphatic vessels, and eventually, extending those findings to humans." Oliver is senior author of a report on this work that appears in the September 18 online issue of Nature Genetics.

The laboratory model (Prox1+/- ) lacked one of two copies of the Prox1 gene, which is required for proper development of the lymphatic system. Previously, Oliver’s laboratory reported that Prox1 activity is necessary for the normal development of cells making up the lymphatic vasculature; and that it is the subsequent budding and sprouting of those cells that give rise to the lymphatic system (Cell [98]:769-778; 1999).

Most Prox1+/- heterozygous (i.e., having only one copy of the gene) models die quickly in the postnatal period as a consequence of extensive lymphatic leakage that accumulates in the abdomen and thorax (chest). "However, those with a milder disruption of their lymphatic vasculature were able to survive and become obese with age," Oliver said.

"Interestingly, those that survived did not develop diabetes, as commonly seen in different types of obesity," he added. "This told us that the type of obesity we were seeing in this laboratory model was different from forms of obesity that are commonly associated with diabetes." The researchers also demonstrated that lymph removed from the abdominal cavity of the Prox1+/- models and added to cultured cells can promote adipocyte differentiation, most likely due to certain factors present in the collected lymph.

"Our findings might encourage physicians to consider that at least some of their obese patients might be suffering from a problem that can’t be solved by eating less and exercising more," Oliver said. Just as many vascular disorders arise because of blood vessel defects, other defects of the closely related lymphatic vessels in addition to edema could also occur in humans, he added.

Kelly Perry | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>